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Suppose that γ is a segment of a characteristic curve and Oγ is a neigh-
borhood of γ in H such that N = Oγ/(C|Oγ ) is a well-defined smooth
manifold. The quotient manifold N is, in fact, a symplectic manifold en-
dowed with a symplectic structure σ̄ induced by σ|H . Let φ : Oγ → N
be the canonical factorization; then φ(Hq ∩ Oγ), q ∈ M , are Lagrangian
submanifolds in N . Let L(TγN) be the Lagrangian Grassmannian of the
symplectic space TγN , i.e., L(TγN) = {Λ ⊂ TγN : Λ∠ = Λ}, where
D∠ = {e ∈ TγN : σ̄(e,D) = 0}, ∀D ⊂ TγN . Jacobi curve of the char-
acteristic curve γ is the mapping

λ �→ φ∗(TλHπ(λ)), λ ∈ γ,

from γ to L(TγN).
Jacobi curves are curves in the Lagrange Grassmannians. They are in-

variants of the hypersurface H in the cotangent bundle. In particular, any
differential invariant of the curves in the Lagrange Grassmannian by the ac-
tion of the linear symplectic group (i.e., any symplectic invariant) produces
a well-defined function on H.
To make things clear it is not worse to give a coordinate version of the

construction of the Jacobi curve. In the neighborhood Oγ , we choose co-
ordinates (x0, x1, . . . , x2n−2) such that the characteristic curves of σ|H are
the straight lines parallel to the x0-axis (here we do not care about the
fact that H comes from the linear fiber bundle T ∗M , we forget about the
linear structure of the fibers). In these coordinates the sets Hπ(λ) are some
(n− 1)-dimensional submanifolds of R2n−1. For any λ ∈ γ take projection
(parallel to x0-axis) of the spaces TλHπ(λ) on the hyperplane {x0 = c} for
some c. Then we obtain a curve of (n − 1)-dimensional subspaces in the
(2n−2)-dimensional linear space. The restriction of the form σ to {x0 = c}
provides this space with symplectic structure and the obtained curve is a
curve of Lagrangian subspaces w.r.t. this structure. This curve is exactly
the Jacobi curve.
Set W = TγN and note that the tangent space TΛL(W ) to the La-

grangian Grassmannian at the point Λ can be naturally identified with the
space of quadratic forms on the linear space Λ ⊂W . Namely, take a curve
Λ(t) ∈ L(W ) with Λ(0) = Λ. Given some vector l ∈ Λ, take a curve l(·)
in W such that l(t) ∈ Λ(t) for all t and l(0) = l. Define the quadratic

form qΛ(·)(l) =
1

2
σ̄
( d
dt
l(0), l
)
. Using the fact that the spaces Λ(t) are La-

grangian, i.e., Λ(t)∠ = Λ(t), it is easy to see that the form qΛ(·)(l) depends

only on
d

dt
Λ(0). Therefore, we have the mapping from TΛL(W ) to the

space of quadratic forms on Λ. A simple calculation of the dimension shows
that this mapping is a bijection. Below we use this identification of tangent
vectors to L(W ) with quadratic forms without a special mentioning.
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Proposition 1. Tangent vectors to the Jacobi curve Jγ at a point Jγ(λ),
λ ∈ γ, are equivalent (under linear substitutions of variables in the corre-
sponding quadratic forms) to the “second fundamental form” of the hyper-
surface Hπ(λ) ⊂ T ∗π(λ)M at the point λ.

Sketch of proof. In our local study we can assume without loss of generality
that H is a regular level set of a smooth function h on T ∗M . Then γ is a
trajectory of the Hamiltonian vector field �h defined by the identity �h�σ =
dh. Let t �→ γ(t) be a parametrization of γ defined by the Hamiltonian

system
d

dt
γ = �h(γ), γ(0) = λ. Given l ∈ φ∗(TλHπ(λ)), take a vector field

� on H such that �(γ(t)) ∈ Tγ(t)Hπ(γ(t)), φ∗�(λ) = l. Simple calculations

show that
d

dt
φ∗�(γ(t)) = φ∗[�h, �](γ(t)). Hence

d

dt
Jγ

∣∣∣
t=0

(l) = σ̄

(
d

dt
φ∗�(γ(t))|t=0, l

)
= σ
(
[�h, �](λ), �(λ)

)
.

Now we rewrite the last formula in coordinates. Let q = (q1, . . . , qn) be
local coordinates in M and p = (p1, . . . , pn) be induced coordinates in

the fiber of T ∗M , so that ς =
n∑
i=1

pidq
i, σ =

n∑
i=1

dpi ∧ dqi. Then �h =

n∑
i=1

( ∂h
∂pi

∂

∂qi
−

∂h

∂qi
∂

∂pi

)
, � =

n∑
i=1

�i
∂

∂pi
, and l = (�1(λ), . . . , �n(λ)). We have

σ
(
[�h, �](λ), �(λ)

)
= l∗

∂2h

∂p2
l.

The quadratic form l �→ l∗
∂2h

∂p2
l is exactly the “second fundamental form”

of the hypersurface Hπ(λ) = h−1(h(λ)) ∩ T ∗π(λ)M in T ∗π(λ)M .

In particular, the velocity of Jγ at λ is a sign-definite quadratic form if
and only if the hypersurface Hπ(λ) is strongly convex at λ.

A similar construction can be made for a submanifold of codimension
2 in T ∗M . Namely, let H be a transversal to fibers of a codimension 2
submanifold in T ∗M . In general, characteristic curves do not fill the whole
submanifoldH; they are concentrated in the characteristic variety consisting
of the points, where σ|H is degenerate. In our local study we can always
assume that H is orientable and that Ω is a volume form on M . Then∧n−1

σ|H = aΩ, where a is a smooth function on H. We set

CH =
{
λ ∈ H : a(λ) = 0,

(
dλa
∧n−1

σ|λ
)
|H �= 0

}
.
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Assume that CH �= ∅. Then CH is a codimension 1 submanifold of H and
σ|CH is a 2-form of corank 1 on CH . Indeed, ∀λ ∈ CH , kerσλ|H is a 2-
dimensional subspace in TλH, which is transversal to TλCH , and we have
kerσλ|CH = kerσλ|H ∩ TλCH .
The characteristic curves of σ|CH form a 1-foliation C of CH . Let γ be

a segment of a characteristic curve and Oγ be a neighborhood of γ in H
such that N = Oγ/(C|Oγ ) is a well-defined smooth manifold. The quotient
manifold N is a symplectic manifold endowed with a symplectic structure σ̄
induced by σ|CH . Let φ : Oγ → N be the canonical factorization. It is easy
to verify that φ∗

(
(TλHπ(λ) + kerσλ|H) ∩ TλCH

)
is a Lagrangian subspace

of the symplectic space Tφ(λ)N , ∀λ ∈ Oγ . Jacobi curve of the characteristic
curve γ is the mapping

λ �→ φ∗
(
(TλHπ(λ) + kerσλ|H) ∩ TλCH

)
, λ ∈ γ,

from γ to L(TγN).

We are mainly interested in submanifolds that are dual objects to smooth
control systems. Here any submanifold V ⊂ TM transversal to fibers is
called a smooth control system. Let Vq = V ∩ TqM ; the “dual” normal
variety H1 and abnormal variety H0 are defined as follows:

H1 =
⋃
q∈M

{
λ ∈ T ∗qM : ∃v ∈ Vq, 〈λ, v〉 = 1, 〈λ, TvVq〉 = 0

}
,

H0 =
⋃
q∈M

{
λ ∈ T ∗qM \ 0 : ∃v ∈ Vq, 〈λ, v〉 = 〈λ, TvVq〉 = 0

}
.

These varieties are not, in general, smooth manifolds; they may have sin-
gularities, which we do not discuss here. Anyway, one can obtain a lot of
information on the original system just studying smooth parts of H1 and
H0.

One of the varieties H1 and H0 can be empty. In particular, if Vq =
∂Wq, where Wq is a convex set and 0 ∈ intWq, then H0 = ∅. Moreover,
in this case the Liouville form never vanishes on the tangent lines to the
characteristic curves of σ|H1 , and any characteristic curve γ has a canonical
parametrization by the rule 〈ς, γ̇〉 = 1. If subsets Vq ⊂ TqM are conical,
αVq = Vq ∀α > 0, then, in contrast to the previous case, H1 = ∅ and
ς vanishes on the tangent lines to the characteristic curves of σ|H0 . The
characteristic curves are actually nonparametrized.

Characteristic curves of σ|H1 (σ|H0) are associated with normal (abnor-
mal) extremals of the control system V . In [1] and [2] Jacobi curves of
extremals were defined in a purely variational way in terms of the origi-
nal control system and in a very general setting (including singularities),
see also [6]. Introduced here Jacobi curves of characteristic curves of σ|H1



GEOMETRY OF JACOBI CURVES. I 97

(σ|H0) coincide with Jacobi curves of the corresponding extremals in the
following important cases:

(1) if H1 has codimension 1 in T ∗M . This occurs, for example, if
subsets Vq are compact ∀q ∈M ;

(2) if H0 has codimension 1 in T ∗M , but H1 = ∅. This occurs, for
example, if for any q subset Vq is conical but does not contain a
2-dimensional linear space;

(3) if H1 has codimension 2. This occurs, for example, if for any q
subset Vq is an affine line in TqM , not containing the origin;

(4) if H0 has codimension 2. This occurs, for example , if Vq are 2-
dimensional linear spaces, i.e., subsets Vq define rank 2 vector dis-
tribution on M , or if Vq = Dq ∩ ∂Wq, where Dq is 2-dimensional
linear space and Wq is a convex set such that 0 ∈ intWq.

Jacobi curves associated with extremals of a given control system are
not arbitrary curves of Lagrangian Grassmannian but they inherit special
features of the control system. The rank of the “second fundamental form”
of the submanifolds H1

q and H0
q of T

∗
qM at any point is not greater than

dimVq. Indeed, let λ ∈ H1
q ; then λ ∈ (TvVq)⊥, 〈λ, v〉 = 1 for some v ∈ Vq.

We have λ+(TvVq+Rv)
⊥ ⊂ H1

q . Therefore, λ belongs to an affine subspace
of dimension n−dimVq−1, which is contained inH1

q . For λ ∈ H0
q , ∃v ∈ TqM

such that λ ∈ (TvVq)
⊥, 〈λ, v〉 = 0. Then linear subspace (TvVq + Rv)

⊥ is
contained in H0

q . It follows that the second fundamental forms of H
1
q and

H0
q have a rank not greater than (dimVq − codimH1 + 1) and (dimVq −

codimH0 + 1), respectively.
In cases (1) and (2), the velocity of the Jacobi curve λ �→ Jγ(λ), λ ∈ γ,

associated with the extremal γ, has rank not greater than dimVπ(λ) (see
Proposition 1). The same is true for the Jacobi curves of the extremals in
cases (3) and (4), although Proposition 1 cannot be directly applied.
Dimension of Vq is the number of inputs or control parameters in the

control system. Less inputs means more “nonholonomic constraints” on
the system. It turns out that the rank of the velocity of any Jacobi curve
generated by the system never exceeds the number of inputs.
Note that by construction these Jacobi curves are feedback invariants of

the control system (i.e., they do not depend on a parametrization of the
sets Vq). Hence any symplectic invariants of the Jacobi curves, associated
with extremals, define a function on an appropriate submanifold of T ∗M
that is a feedback invariant of the control system. In this way the problem
of finding feedback invariants of control systems can be reduced to a much
more treatable problem of finding symplectic invariants of certain curves in
the Lagrange Grassmannian.
A curve in the Lagrange Grassmannian is called regular, if its velocity at

any point is a nondegenerate quadratic form. Regular curves were studied in
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[1], where notions of the derivative curve and the curvature operator were
introduced. Actually, the derivative curves of Jacobi curves, associated
with the hypersurface H, provide a canonical connection on the cotangent
bundle. If H is a spherical bundle of a Riemannian manifold, then this
connection is just the Levi-Civita connection. The curvature operator of
the Jacobi curve is intimately connected with the curvature tensor of the
canonical connection.
In the present paper we develop general theory of curves in the La-

grangian Grassmannian. The first steps in this direction were made in [3]. It
makes sense to restrict ourselves to studying so-called monotone (i.e., nonde-
creasing or nonincreasing) curves. The curve in Lagrangian Grassmannian
is called nondecreasing (nonincreasing), if the velocity at any point of it is a
nonpositive (respectively, nonnegative) quadratic form. Jacobi curve asso-
ciated with the extremal of finite Morse index is automatically monotone.
This paper is organized as follows. In Sec. 2 we give the general con-

struction of the derivative curve and introduce two principal discrete char-
acteristics of the curves in the Lagrange Grassmannian: the rank and the
weight. In particular, regular curves have the maximal rank and minimal
weight. The derivative curve is defined for any curve of the finite weight.
In Sec. 3 we define the curvature operator and show its role for the regular
curves.
In Sec. 4 we study the cross-ratio of four points and an infinitesimal

cross-ratio of two tangent vectors at two distinct points in the Lagrange
Grassmannian. The last one leads to an intrinsic pairing V0, V1 �→ 〈V0 | V1〉,
Vi ∈ TΛiL(W ), i = 0, 1, of the tangent spaces to two distinct points Λ0 and
Λ1 of the Grassmannian. The pairing 〈Λ̇(t) | Λ̇(τ)〉 of the velocities of the
curve t �→ Λ(t) gives a symmetric function of two variables which keeps all
essential information about the curve. This function is defined out of the
diagonal {t = τ} and has a very simple singularity at the diagonal:

〈Λ̇(t) | Λ̇(τ)〉 = −
k

(t− τ)2
− gΛ(t, τ),

where k is the weight of the curve and g
Λ
(t, τ) is a smooth function!

The first coming invariant of the parametrized curve, the generalized
Ricci curvature, is just gΛ(t, t), the value of gΛ at the diagonal. For regular
curves and for rank 1 curves, Ricci curvature is equal also to the trace of
the defined earlier curvature operator.
In Sec. 5 we are focused on nonparametrized curves. Our investigation

is based on a simple chain rule for a function gΛ . Indeed, let ϕ : R �→ R be
a smooth monotone function. It follows directly from definition of g

Λ
that

g
Λ◦ϕ(t, τ) = ϕ̇(t)ϕ̇(τ)g

Λ
(ϕ(t), ϕ(τ)) + k

(
ϕ̇(t)ϕ̇(τ)

(ϕ(t)− ϕ(τ))2
−

1

(t− τ)2

)
.
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In particular,

g
Λ◦ϕ(t, t) = ϕ̇(t)2g

Λ
(ϕ(t), ϕ(t)) +

k

3
S(ϕ),

where S(ϕ) is a Schwarzian derivative of ϕ. The class of local parametriza-
tions that kill the generalized Ricci curvature defines a canonical projective
structure on the curve. The principal invariant of the nonparametrized
curve, the fundamental form, is a fourth-order differential on the curve; in
the canonical projective parameter, the fundamental form has the expres-

sion
1

2

∂2gΛ
∂τ2

(t, t)(dt)4.

In Sec. 6 we begin a systematic study of the rank 1 curves and show that
a rank 1 curve has a constant weight out of a discrete set of its interval of

definition. In Sec. 7 we prove that functions
∂2ig

Λ

∂τ2i
(t, t), 0 ≤ i ≤ m − 1,

form a complete system of symplectic invariants of a rank 1 and constant
weight curve Λ(·) in the Lagrange Grassmannian L(R2m).
The Lagrange Grassmannian L(R2m) is a submanifold of the manifold

G(m, 2m) of all m-dimensional subspaces of R2m. The constructions of the
derivative curve, function g

Λ
, canonical projective structure, and fundamen-

tal form can be made in the same way for general curves in G(m, 2m).

2. Derivative curve

From now on W will be 2m-dimensional linear space endowed with the
symplectic form σ̄. Let Λ be a Lagrangian subspace of W , i.e., Λ ∈ L(W ).
For any w ∈ Λ, the linear form σ̄(·, w) vanishes on Λ and thus defines a
linear form on W/Λ. The nondegeneracy of σ̄ implies that the relation
w �→ σ̄(·, w), w ∈ Λ, induces a canonical isomorphism Λ ∼= (W/Λ)∗ and, by
the conjugation, Λ∗ ∼=W/Λ.
We set Λ� = {Γ ∈ L(W ) : Γ∩Λ = 0}, an open everywhere dense subset of

L(W ). Let Sym2(Λ) be the space of self-adjoint linear mappings from Λ∗ to
Λ; this notation shows the fact that Sym2(Λ) is the space of quadratic forms
on Λ∗ that is the symmetric square of Λ. Λ� possesses a canonical structure
of an affine space over the linear space Sym2(Λ) = Sym2((W/Λ)∗). Indeed,
for any ∆ ∈ Λ� and coset (w + Λ) ∈ W/Λ, the intersection ∆ ∩ (w + Λ)
of the linear subspace ∆ and the affine subspace w + Λ in W consists of
exactly one point. To a pair Γ,∆ ∈ Λ�, there corresponds a mapping
(Γ−∆) :W/Λ→ Λ, where

(Γ−∆)(w +Λ)
def
= Γ ∩ (w +Λ)−∆ ∩ (w +Λ).

It is easy to verify that the identification W/Λ = Λ∗ makes (Γ−∆) a self-
adjoint mapping from Λ∗ to Λ. Moreover, given ∆ ∈ Λ�, the correspondence
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Γ �→ (Γ−∆) is a one-to-one mapping of Λ� onto Sym2(Λ) and the axioms
of the affine space are obviously satisfied.
Fixing ∆ ∈ Λ� one obtains a canonical identification ∆ ∼= W/Λ = Λ∗.

In particular, (Γ −∆) ∈ Sym2(Λ) becomes the mapping from ∆ to Λ. For
the last linear mapping we will use the notation 〈∆,Γ,Λ〉 : ∆→ Λ. In fact,
this mapping has a much more straightforward description. Namely, the
relations W = ∆ ⊕ Λ and Γ ∩ Λ = 0 imply that Γ is the graph of a linear
mapping from ∆ to Λ. Actually, it is the graph of the mapping 〈∆,Γ,Λ〉. In
particular, ker〈∆,Γ,Λ〉 = ∆∩Γ. If ∆∩Γ = 0, then 〈Λ,Γ,∆〉 = 〈∆,Γ,Λ〉−1.
Let us give coordinate representations of the introduced objects. We may

assume that

W = Rm ⊕ Rm =
{
(x, y) : x, y ∈ Rm

}
,

σ̄((x1, y1), (x2, y2)) = 〈x1, y2〉 − 〈x2, y1〉, Λ = Rm ⊕ 0, ∆ = 0⊕ Rm.

Then any Γ ∈ ∆� takes the form Γ = {(x, Sx) : x ∈ Rn}, where S is a
symmetric m ×m matrix. The operator 〈Λ,Γ,∆〉 : Λ → ∆ is represented
by the matrix S, while the operator 〈∆,Γ,Λ〉 is represented by the matrix
S−1.
The coordinates in Λ induce an identification of Sym2Λ with the space

of symmetric m×m matrices. Λ� is an affine subspace over Sym2Λ; we fix
∆ as the origin in this affine subspace and thus obtain a coordinatization of
Λ� by symmetric m×m matrices. In particular, the “point” Γ = {(x, Sx) :
x ∈ Rn} in Λ� is represented by the matrix S−1.
A subspace Γ0 = {(x, S0x) : x ∈ Rn} is transversal to Γ if and only if

det(S−S0) �= 0. Let us choose coordinates {x} in Γ0 and fix ∆ as the origin
in the affine space Γ�0 . In the induced coordinatization of Γ

�
0 the “point” Γ

is represented by the matrix (S − S0)
−1.

Let t �→ Λ(t) be a smooth curve in L(W ) defined on some interval I ⊂ R.
We say that the curve Λ(·) is ample at τ if ∃s > 0 such that for any
representative Λsτ (·) of the s-jet of Λ(·) at τ , ∃t such that Λ

s
τ (t)∩Λ(τ) = 0.

The curve Λ(·) is called ample if it is ample at any point.
We have given an intrinsic definition of an ample curve. In coordinates

it takes the following form: the curve t �→ {(x, Stx) : x ∈ Rn} is ample at τ
if and only if the function t �→ det(St − Sτ ) has a root of finite order at τ .
The following lemma shows that analytic monotone curve (monotone

means that the curve has nonnegative or nonpositive velocities at all points)
can be actually reduced to the ample curve by an appropriate factorization.

Lemma 2.1. Let Λ(t) be an analytic monotone curve in L(W ). Then
for any parameter τ there exists a subspace K of Λ(τ) such that for all t
sufficiently close to τ the following relation holds :

K = Λ(t) ∩ Λ(τ). (2.1)
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In addition, if Λ(t) is not a constant curve, then the curve t �→ Λ(t)/K is
a well-defined ample curve in the Lagrange Grassmannian L(K∠/K).

Proof. Without loss of generality suppose that the curve Λ(t) is nonde-
creasing (i.e., has a nonnegative definite velocity at any point). Denote
Kt = Λ(t) ∩ Λ(τ). Let t �→

{
(x, Stx) : x ∈ Rn

}
be a coordinate represen-

tation of the germ of Λ(t) at τ . Then Kt = Ker(St − Sτ ). By assumption,

v →
〈 d
dt
Stv, v
〉
is a nonnegative definite quadratic form on Λ(τ). This

implies that Kt2 ⊂ Kt1 for t < t1 < t2. Therefore, for t > τ sufficiently
close to τ the subspace Kt does not depend on t and will be denoted by K.
By analyticity, the subspaces K ⊂ Λ(t) for any t and the curve t �→ Λ(t)/K
is a well-defined ample curve in the Lagrange Grassmannian L(K∠/K).

Assume that Λ(·) is ample at τ . Then Λ(t) ∈ Λ(τ)� for all t from a
punctured neighborhood of τ . We obtain the curve t �→ Λ(t) ∈ Λ(τ)�

in the affine space Λ(τ)� with the pole at τ . We denote by Λτ (t) the
identity imbedding of Λ(t) in the affine space Λ(τ)�. The subscript τ is not
superfluous, since the affine structure depends on Λ(τ) and, therefore, on τ .
Fixing an “origin” in Λ(τ)�, we make Λτ (t) a vector function with values
in Sym2(Λ) and with the pole at t = τ . Such a vector function admits
an expansion into the Laurent series at τ . Obviously, only the free term
in the Laurent expansion depends on the choice of the “origin” chosen for
identifying the affine space with the linear one. More precisely, the addition
of a vector to the “origin” results in the addition of the same vector to
the free term in the Laurent expansion. In other words, for the Laurent
expansion of a curve in an affine space, the free term of the expansion
is a point of this affine space while all other terms are elements of the
corresponding linear space. In particular,

Λτ (t) ≈ Λ0(τ) +
∞∑
i=−l
i�=0

Qi(τ)(t − τ)i, (2.2)

where Λ0(τ) ∈ Λ(τ)�, Qi(τ) ∈ Sym2Λ(τ).
Assume that the curve Λ(·) is ample. Then Λ0(τ) ∈ Λ(τ)� is defined for

all τ . The curve τ �→ Λ0(τ) is called the derivative curve of Λ(·).
Another characterization of Λ0(τ) can be given in terms of the curves

t �→ 〈∆,Λ(t),Λ(τ)〉 in the linear space Hom(∆,Λ(τ)), ∆ ∈ Λ(τ)�. These
curves have poles at τ . The Laurent expansion at t = τ of the vector
function t �→ 〈∆,Λ(t),Λ(τ)〉 has zero free term if and only if ∆ = Λ0(τ).
The coordinate version of series (2.2) is the Laurent expansion of the

matrix-valued function t �→ (St − Sτ )
−1 at t = τ , where Λ(t) =

{
(x, Stx) :

x ∈ Rn
}
.
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Suppose that

(St − Sτ )
−1 ≈

∞∑
i=−l

Ai(τ)(t − τ)i. (2.3)

Differentiating both sides of (2.3) w.r.t. τ and comparing coefficients of
the corresponding expansions, one can obtain the following recursive type
formula for the coefficients Ai(τ):

d

dτ
Ai(τ) = (i+ 1)Ai+1(τ) +

i+l∑
j=−l

Aj(τ)ṠτAi−j(τ) (2.4)

that will be used in the sequel.
For a monotone ample curve Λ : I ⊂ R �→ L(W ) we introduce the

following two notions.

Definition 1. The rank of the velocity Λ̇(τ) is said to be the rank of the
curve Λ(·) at τ . The order of the zero of the function t �→ det(St − Sτ ) at
τ , where St is a coordinate representation of Λ(·), is said to be the weight
of Λ(·) at τ .

It is easy to see that the rank and the weight of Λ(τ) are integer valued
upper semicontinuous functions of τ . In particular, they are locally constant
on the open dense subset of the interval of definition I. In the sequel we
will be mostly concentrated on the monotone ample curves of the constant
rank and weight.

3. Curvature operator and regular curves

Using derivative curve, one can construct an operator invariant of the
curve Λ(t) at any its point. Namely, take velocities Λ̇(t) and Λ̇0(t) of Λ(t)
and its derivative curve Λ0(t). Note that Λ̇(t) is a linear operator from Λ(t)
to Λ(t)∗ and Λ̇0(t) is a linear operator from Λ0(t) to Λ0(t)∗. Since the form
σ defines the canonical isomorphism between Λ0(t) and Λ(t)∗, we can define
the following operator R(t) : Λ(t)→ Λ(t):

R(t) = −Λ̇0(t) ◦ Λ̇(t). (3.1)

This operator is said to be the curvature operator of Λ at t.

Remark 1. In the case of the Riemannian geometry, the operator R(t) is
similar to the so-called Ricci operator v → R∇(γ̇(t), v)γ̇(t), which appears in
the classical Jacobi equation ∇γ̇(t)∇γ̇(t)V +R∇(γ̇(t), V )γ̇(t) = 0 for Jacobi
vector fields V along the geodesic γ(t) (here R∇ is curvature tensor of the
Levi-Civita connection ∇), see [1]. This is the reason for the sign “−” in
(3.1).
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The curvature operator plays an important role for so-called regular
curves. The curve Λ(t) in the Lagrangian Grassmannian is called regu-
lar, if the quadratic form Λ̇(t) is nondegenerate for all t. If the curve Λ(·)
is regular and has a coordinate representation Λ(t) =

{
(x, Stx) : x ∈ Rn

}
,

then the function t �→ (St − Sτ )
−1 has a simple pole at τ . Indeed,

(St − Sτ )
−1 =
(
Ṡτ (t− τ) +O((t− τ)2)

)−1
=

Ṡ−1τ
t− τ

(
I +O(t − τ)

)−1
=

=
Ṡ−1τ
t− τ

+O(1). (3.2)

Therefore, in the notation of (2.3), for the regular curve we have l = 1,
A−1 = Ṡ−1τ , and relation (2.4) can be transformed into the following recur-
sive formula:

Ai+1(τ) =
1

i+ 3

(
d

dτ
Ai(τ) −

i∑
j=0

Aj(τ)ṠτAi−j(τ)

)
. (3.3)

In particular,

A0(τ) =
1

2

d

dτ
A−1(τ) = −

1

2
Ṡ−1τ S̈τ Ṡ

−1
τ (3.4)

and, by a direct calculation,

A1(τ) =
1

3

(
d

dτ
A0(τ) −A0(τ)ṠτA0(τ)

)
=

=

(
1

4

(
Ṡ−1τ S̈τ

)2
−
1

6
Ṡ−1τ S(3)τ

)
Ṡ−1τ . (3.5)

For a given τ one can choose a coordinate representation St of the curve
Λ(t) such thatA0(τ) = 0. Namely, let St be the matrix of the linear mapping
〈Λ(τ),Λ(t),Λ0(τ)〉. In this coordinate representation, the derivative Ȧ0(τ)
is a matrix corresponding to the velocity Λ̇0(τ) of the derivative curve.
Also, from (3.5) it follows that Ȧ0(τ) = 3A1(τ). This together with (3.1)
implies that the matrix R(τ) corresponding in the chosen basis of Λ(τ) to
the curvature operator R(τ) has the form

R(τ) = −3A1(τ)(A−1(τ))
−1 =

1

2
Ṡ−1τ S(3)τ −

3

4

(
Ṡ−1τ S̈τ

)2
=

=
d

dτ

(
(2Ṡτ )

−1S̈τ

)
−
(
(2Ṡτ )

−1S̈τ

)2
. (3.6)

Since Q1(τ) ◦ (Q−1(τ))−1 : Λ(τ) �→ Λ(τ) is a well-defined operator, we can
write the first equality of (3.6) in the operator form:

R(τ) = Q1(τ) ◦ (Q−1(τ))
−1. (3.7)
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This actually implies that relation (3.6) also holds for any coordinate rep-
resentation St of the curve Λ(t) (even without assumption that A0(τ) = 0).
Note that the right-hand side of (3.6) is a matrix analog of the so-called

Schwarz derivative or Schwarzian. Let us recall that the differential operator

S : ϕ �→
1

2

ϕ(3)

ϕ′
−
3

4

(ϕ′′
ϕ′

)2
=

d

dt

( ϕ′′
2ϕ′

)
−
( ϕ′′
2ϕ′

)2
(3.8)

acting on scalar functions ϕ is called Schwarzian. The operator S is char-
acterized by the following remarkable property: a general solution of the
equation Sϕ = ρ w.r.t. ϕ is a Möbius transformation (with constant coeffi-
cients) of some particular solution of this equation. The matrix analog of
this operator has a similar property, concerning “matrix Möbius transfor-
mations” of the type S �→ (C +DS)(A+BS)−1. In particular, if R(t) ≡ 0,
then the coordinate representation St of our curve has the form

St = (C +Dt)(A+Bt)−1,

where (
A B
C D

)
∈ Sp(2m).

For further information about the regular curves we refer to [1].

4. Expansion of the cross-ratio and Ricci curvature

For a nonregular curve Λ(t) =
{
(x, Stx) : x ∈ Rn

}
, the function t �→

(St − Sτ )
−1 has a pole of order greater than 1 at τ and it is much more

difficult to compute its Laurent expansion. For example, in the nonregular
case there is no direct recursive formula like (3.3). In this section we show
how to construct numerical invariants for curves of constant weight using
the notion of the cross-ratio of four “points” in the Lagrange Grassmannian.
Let Λ0, Λ1, Λ2, and Λ3 be Lagrangian subspaces ofW such that Λ0∩Λ3 =

Λ1 ∩ Λ2 = 0. Also suppose for simplicity that Λ0 ∩ Λ2 = 0. The linear
mappings 〈Λ0,Λ1,Λ2〉 : Λ0 → Λ2 and 〈Λ2,Λ3,Λ0〉 : Λ2 → Λ0 are well

defined. The cross-ratio
[
Λ0,Λ1,Λ2,Λ3

]
of four “points” Λ0, Λ1, Λ2, and

Λ3 in the Lagrangian Grassmannian is, by definition, the following linear
operator in Λ0: [

Λ0,Λ1,Λ2,Λ3
]
= 〈Λ2,Λ3,Λ0〉〈Λ0,Λ1,Λ2〉. (4.1)

This notion is a “matrix” analog of the classical cross-ratio of four points
in the projective line. Indeed, let Λi = {(x, Six) : x ∈ Rn}, then, in
coordinates {x}, the cross-ratio takes the form:

[Λ0,Λ1,Λ2,Λ3] = (S0 − S3)
−1(S3 − S2)(S2 − S1)

−1(S1 − S0). (4.2)
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By construction, all coefficients of the characteristic polynomial of [Λ0 , Λ1,
Λ2, Λ3] are invariants of four subspaces Λ0, Λ1, Λ2, and Λ3.

The assumption that Λ0∩Λ2 = 0 is satisfied in our further considerations
but the cross-ratio can also be defined without this assumption. Indeed,
the matrix in the right-hand side of (4.2) is also well defined in the case
Λ0 ∩Λ2 �= 0 and this matrix is transformed into a similar matrix under any
change of coordinates. Thus we obtain the class of similar matrices that is
a symplectic invariant of four subspaces Λ0, Λ1, Λ2, and Λ3. This class can
be taken as a definition of the cross-ratio [Λ0,Λ1,Λ2,Λ3] (see [7] for details).

Given two tangent vectors V0 ∈ TΛ0L(W ) and V1 ∈ TΛ1L(W ), where Λ0
and Λ1 are transversal Lagrangian subspaces, one can define an infinitesimal
analog of the cross-ratio. V0 is the self-adjoint linear mapping from Λ0 to
Λ∗0. The form σ identifies canonically Λ∗0 with Λ1. Under this identification
V0 can be considered as a linear mapping from Λ0 to Λ1. In the same way,
identifying Λ∗1 with Λ0, we look at V1 as at an operator from Λ1 to Λ0.
Therefore, the following operator V1 � V0 : Λ0 → Λ0 can be defined:

V1 � V0
def
= V1 ◦ V0. (4.3)

This operator is said to be an infinitesimal cross-ratio of a pair (V0, V1) ∈
TΛ0L(W )×TΛ1L(W ). The infinitesimal cross-ratio is a symplectic invariant
of the tangent vectors V0 and V1.
One can define the following bilinear form 〈· | ·〉Λ0,Λ1 on TΛ0L(W ) ×

TΛ1L(W ):

〈V0 | V1〉Λ0,Λ1
def
= tr(V0 � V1). (4.4)

This bilinear form is said to be an inner pairing of the tangent spaces
TΛ0L(W ) and TΛ1L(W ).

If Λi =
{
(x, Six) : x ∈ Rn

}
and Pi are symmetric matrices corresponding

to Vi, i = 0, 1, then

V1 � V0 = (S0 − S1)
−1P1(S1 − S0)

−1P0. (4.5)

We note first that if the curve Λ(t) is regular, then for any t0 it is easy
to expand the following operator function

(t1, t2, t3) �→
[Λ(t0),Λ(t1),Λ(t2),Λ(t3)]

[t0, t1, t2, t3]
(4.6)

into the Taylor expansion at the diagonal point (t0, t0, t0), where[
t0, t1, t2, t3

]
=
(t1 − t0)(t3 − t2)

(t2 − t1)(t0 − t3)
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is the usual cross-ratio of four numbers t0, t1, t2, and t3. Namely, the
expansion

[Λ(t0),Λ(t1),Λ(t2),Λ(t3)]

[t0, t1, t2, t3]
=

= I +
1

3
R(t0)(t2 − t0)(t3 − t1) +O

(( 3∑
i=1

(ti − t0)
2

)3/2)
(4.7)

is valid, where, as before, R(t) is the curvature operator. Relation (4.7)
shows that the curvature operator is the first nontrivial coefficient of the
Taylor expansion of the cross-ratio.
Unfortunately, for the nonregular curves there are no simple expansions

of the operator function (4.6) or any other operator functions, involving the
cross-ratio itself. Instead of this one can try to expand the coefficients of
the characteristic polynomial of the cross-ratio. Now we are going to show
how to use this idea in the construction of invariants of the curve Λ(t) of
the constant weight k in L(W ).
By the above, the function (t0, t1, t2, t3)→ det [Λ(t0),Λ(t1),Λ(t2),Λ(t3)]

is one of the symplectic invariants of the curve Λ(t). Using this fact, let us
try to find symplectic invariants of Λ(t) that are functions of t. First, we
introduce the following function:

G(t0, t1, t2, t3) = ln

(
det
[
Λ(t0),Λ(t1),Λ(t2),Λ(t3)

][
t0, t1, t2, t3

]k
)
. (4.8)

The function G(t0, t1, t2, t3) is also a symplectic invariant of Λ(t) and, in
addition, it can be defined as a smooth function in a neighborhood of any
diagonal point (t, t, t, t). Indeed, by the definition of the weight

det(St0 − St1) = (t0 − t1)
kX(t0, t1), (4.9)

where

X(t, t) �= 0 (4.10)

for any t. The function X(t0, t1) is symmetric, since by changing the order
in (4.9) we obtain that X can be symmetric or antisymmetric, but the last
case is impossible by (4.10).
Let us define another symmetric function

f(t0, t1) = lnX(t0, t1). (4.11)

The function f(t0, t1) is smooth in a neighborhood of any diagonal point
(t, t) and by (4.2) and (4.8),

G(t0, t1, t2, t3) = f(t1, t0)− f(t2, t1) + f(t3, t2)− f(t0, t3). (4.12)
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Hence G(t0, t1, t2, t3) can be defined as a smooth function in a neighbor-
hood of any diagonal point (t, t, t, t). Using this fact, one can construct the
following functions of two variables that are symplectic invariants of the
curve Λ(t):

h(t0, t1) = G(t0, t1, t1, t0) = 2f(t0, t1)− f(t0, t0)− f(t1, t1), (4.13)

g(t0, t1) =
1

2

∂2

∂t0∂t1
h(t0, t1) =

∂2

∂t0∂t1
f(t0, t1). (4.14)

On the contrary, the function f(t0, t1) depends on the choice of the coordi-
nate representation St.

It follows from (4.13) that h(t0, t0) ≡ 0 and
∂

∂t0
h(t0, t0) ≡ 0. Therefore,

the function h(t0, t1) can be recovered from g(t0, t1). Moreover, the function
G(t0, t1, t2, t3) can be easily recovered from h(t0, t1) (and, therefore, from
g(t0, t1)). Namely, by (4.12) and (4.14)

G(t0, t1, t2, t3) =
1

2

(
h(t1, t0)− h(t2, t1) + h(t3, t2)− h(t0, t3)

)
. (4.15)

Therefore, g or h keep all information about G and thus about

det
[
Λ(t0),Λ(t1),Λ(t2),Λ(t3)

]
.

The function g(t0, t1) can be expanded into a formal Taylor series at the
point (t, t) in the following way:

g(t0, t1) ≈
∞∑
i,j=0

βi,j(t)(t0 − t)i(t1 − t)j (4.16)

with

βi,j(t) = βj,i(t). (4.17)

Since the function g is a symplectic invariant of the curve Λ(t), all coef-
ficients βi,j(t), i, j ≥ 0, are also symplectic invariants.
The following natural questions arise: does the function g(t0, t1) deter-

mine the curve Λ(t) with a prescribed rank and weight uniquely, up to a
symplectic transformation, and what set of the coefficients βi,j(t) deter-
mines the function g(t0, t1)? We will give the positive answers on both of
these questions in Sec. 7 for the curve of rank 1 (see Theorems 1 and 2).
Meanwhile, let us prove the following simple relation between coefficients

βi,j(t):

β′i,j(t) = (i+ 1)βi+1,j + (j + 1)βi,j+1. (4.18)
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Indeed, from (4.16) it follows that

βi,j(t) =
1

i! j!

∂i+jg

∂ti0∂t
j
1

(t, t).

Therefore,

β′i,j(t) =
1

i! j!

( ∂i+j+1

∂ti+10 ∂tj1
g(t, t) +

∂i+j+1

∂ti0∂t
j+1
1

g(t, t)
)
=

=
1

i! j!

(
(i+ 1)! j!βi+1,j(t) + i! (j + 1)!βi,j+1(t)

)
,

which implies (4.18).

As a consequence of relation (4.18) we obtain the following lemma.

Lemma 4.1. The coefficients β0,2k(t), k ≥ 0, determine uniquely the
formal expansion (4.16).

Proof. For a given n ≥ 0 let us consider all equations of type (4.18) with
i+ j = n and i ≤ j. We consider two cases:

(1) if n is even, then we have
n

2
+ 1 independent equations with respect

to
n

2
+ 1 variables βi,j(t), i+ j = n+1, 0 ≤ i <

n

2
. This fact together with

symmetric relation (4.17) implies that all βi,j(t) with i+ j = n+ 1 can be
expressed in terms of derivatives of βi,j with i+ j = n;

(2) if n is odd, then we have
n+ 1

2
independent equations with respect

to
n+ 1

2
+ 1 variables βi,j , i + j = n + 1, 0 ≤ i <

n+ 1

2
. Starting from

i = 0, one can express step by step all βi,j , i+ j = n+ 1, 1 ≤ i <
n+ 1

2
in

terms of β0,n+1 and derivatives of βi,j with i+ j = n. Then by symmetric
relation (4.17) we have that all coefficients βi,j(t) with i+ j = n+1 can be
expressed in terms of β0,n+1 and derivatives of βi,j with i+ j = n.

Therefore, starting from n = 0 and applying step by step the arguments
of (1) and (2), one can express all βi,j(t) in terms of β0,2k(t), k ≥ 0, and
their derivatives.

It turns out that there is a simple connection between function g, the in-
ner pairing defined by (4.4), and the coefficients Qi of the Laurent expansion
(2.2).
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Lemma 4.2. The following relations hold :

〈 Λ̇(t) | Λ̇(τ) 〉Λ(t),Λ(τ) = −
k

(t− τ)2
− g(t, τ), (4.19)

tr
(
Qi(t)Λ̇(t)

)
= 0, i < −1, (4.20)

tr
(
Q−1(t)Λ̇(t)

)
= k, (4.21)

tr
(
Qi(t)Λ̇(t)

)
= −

1

i
β0,i−1(t), i ∈ N. (4.22)

Proof. Let Λτ (t) be the identity imbedding of Λ(t) in the affine space Λ(τ)
�

(see Sec. 2). Then the inner pairing 〈 Λ̇(t) | Λ̇(τ) 〉Λ(t),Λ(τ) can be expressed
as follows:

〈 Λ̇(t) | Λ̇(τ) 〉Λ(t),Λ(τ) = tr

(
∂

∂t
Λτ (t) ◦ Λ̇(τ)

)
. (4.23)

In the coordinates, the previous relation can be written as follows:

〈 Λ̇(t) | Λ̇(τ) 〉Λ(t),Λ(τ) = tr

(
∂

∂t

(
(St − Sτ )

−1
)
Ṡτ

)
. (4.24)

Let us prove (4.20). By definition,

ln(det(St − Sτ )) = k ln(t− τ) + f(t, τ).

Differentiating this equality w.r.t. τ and using the fact that

d

dτ

(
ln(detY (τ))

)
= tr
(
(Y (τ))−1Ẏ (τ)

)
for some matrix curve Y (τ), we obtain:

−tr
(
(St − Sτ )

−1Ṡτ
)
= −

k

t− τ
+

∂

∂τ
f(t, τ).

Differentiating this equality w.r.t. t and using (4.14), we obtain

−tr
( ∂
∂t

(
(St − Sτ )

−1
)
Ṡτ

)
=

k

(t− τ)2
+

∂2

∂t∂τ
f(t, τ) =

=
k

(t− τ)2
+ g(t, τ).

This together with (4.24) implies (4.20).
In order to prove (4.20)–(4.22), we expand both sides of (4.20) into the

corresponding formal series. On one hand, by (2.2) we have

tr

(
∂

∂t
Λτ (t) ◦ Λ̇(τ)

)
≈

∞∑
i=−l−1

(i+ 1)tr
(
Qi+1(τ)Λ̇(τ)

)
(t− τ)i. (4.25)
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On the other hand, by (4.16)

g(t, τ) ≈
∞∑
0

β0,i(τ)(t − τ)i. (4.26)

Comparing coefficients of (4.25) and (4.26), we obtain (4.20)–(4.22).

For the regular curve, using (3.6) and applying formula (4.22) to the first
appearing in (4.16) coefficient β0,0(t), we obtain

β0,0(t) =
1

3
trR(t) =

1

3
trS(St), (4.27)

where S denotes Schwarz operator. The last relation and Remark 1 show
that β0,0 generalizes the Ricci curvature in the Riemannian geometry. It
justifies the following definition for the general curve of constant rank and
weight.

Definition 2. The first appearing in (4.16) coefficient β0,0(t) is called
the Ricci curvature of Λ(t).

In the sequel, the Ricci curvature will be denoted by ρ(t).
At the end of this section we compute the expansion of g(t0, t1) in the

case dimW = 2. In this case L(W ) is, in fact, the real projective line RP1

and coordinate representation St of the curve is a scalar function. Therefore,
relation (4.22) can be rewritten in the form

β0,i = −(i+ 1)Ai+1(t)Ṡt,

where Ai are as in (2.3). In particular, from (4.27) it follows that

ρ(t) =
1

3
S(St), (4.28)

i.e., in the scalar case the Ricci curvature of the curve Λ(t) is the Schwarzian
of its coordinate representation.
Let us denote

Bi(τ) = −
1

i
β0.i−1 = A(τ)Ṡτ . (4.29)

Multiplying both sides of (3.3) by Ṡτ and using the commutativity of mul-
tiplication in the scalar case, one can easily obtain the following recursive
formula forBi(τ):

Bi+1(τ) =
1

i+ 3

(
d

dτ
Bi(τ) −

i−1∑
j=1

Bj(τ)Bi−j(τ)

)
, i ∈ N. (4.30)

As a consequence of Lemma 4.1 and formulas (4.28)–(4.30), one can
obtain the following proposition.
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Proposition 2. In the scalar case (i.e., dimW = 2) all coefficients
βi,j(t) can be expressed in terms of the Ricci curvature (that is Schwarzian
of any coordinate representation of the curve Λ(t)) and its derivatives. The
function g(t, τ) is identically equal to zero iff coordinate representations of
the curve Λ(t) are Möbius transformations.

5. Fundamental form of the nonparametrized curve

The Jacobi curve constructed in Introduction is actually a non-
parametrized curve, i.e., a one-dimensional submanifold in the Lagrange
Grassmannian. Therefore, it is natural to find symplectic invariants of non-
parametrized curves in L(W ). Especially it is important for Jacobi curves
of abnormal extremals which (in contrast to the normal extremals) a priori
have no special parametrizations.
First of all, we want to show how, using the Ricci curvature, one can de-

fine a canonical projective structure on the nonparametrized curve Λ(·). For
this let us find how the Ricci curvature is transformed by a reparametriza-
tion of the curve Λ(t).
Let τ = ϕ(t) be a reparametrization and let Λ̄(τ) = Λ(ϕ−1(τ)). For some

coordinate representation St of Λ(t) let S̄τ = Sϕ−1(τ) be the coordinate
representation of Λ̄(τ). Denote by f̄ the function playing for S̄τ the same
role as the function f defined by (4.11) plays for St. Then from (4.11) it
follows that

f̄(τ0, τ1) = f(t0, t1)− k ln

(
ϕ(t0)− ϕ(t1)

t0 − t1

)
, (5.1)

where τi = ϕ(ti), i = 0, 1.
Now we denote by ḡ and β̄i,j functions playing for Λ̄(τ) the same role as

the functions g and βi,j defined by (4.14) and (4.16) play for Λ(t).
Note also that we can look at the function ϕ(t) as at the coordinate

representation of some curve in RP1 = L(W ) with dimW = 2. Therefore,
all constructions and formulas of the previous section can be applied to this
case. We denote by gϕ(t0, t1) the function defined by (4.11), (4.14) with St
replaced by ϕ(t). Then differentiating both sides of (5.1) once w.r.t. t0 and
twice w.r.t. t1, we obtain

ḡ (ϕ(t0), ϕ(t1))ϕ
′(t0)ϕ

′(t1) = g(t0, t1)− kgϕ(t0, t1). (5.2)

By (4.16) and (4.28) it follows that the substitution of t0 = t1 = t into
(5.2) gives the following reparametrization rule for the Ricci curvature:

ρ̄(τ)(ϕ′(t))2 = ρ(t)−
k

3
S(ϕ(t)). (5.3)

Now we would like to find all reparametrizations τ = ϕ(t) such that the
Ricci curvature ρ̄(τ) in the new parameter τ is identically equal to zero.
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The reparametrization rule (5.3) implies that such reparametrization have
to satisfy the following differential equation:

S (ϕ(t)) =
3ρ(t)

k
. (5.4)

This equation has a solution at least locally (i.e., in a neighborhood of
any given point) and as was already mentioned in Sec. 3, any two solu-
tions are transformed one into another by a Möbius transformation. In
other words, the set of all parametrizations of Λ(·) with the Ricci curva-
ture identically equal to zero defines a projective structure on Λ(·) (any
two parametrizations from this set are transformed one into another by a
Möbius transformation). It is said to be the canonical projective structure
of the curve Λ(·). The parameters of the canonical projective structure are
said to be projective parameters.
Now we give a construction of a special form on a nonparametrized curve

Λ(·) (namely, the fourth-order differential on Λ(·)), which is the first appear-
ing invariant of the nonparametrized curve. We will call it the fundamental
form of the curve Λ(·).
Let t be a projective parameter on Λ(·). Then by definition ρ(t) ≡ 0,

and by (4.18), β0,1(t) ≡
1

2
β′0,0(t) ≡ 0. Therefore, by (4.26) we obtain that

in the projective parameter,

g(t0, t1) = β0,2(t0)(t1 − t0)
2 +O

(
(t1 − t0)

3
)
. (5.5)

Let τ be another projective parameter on Λ(·), i.e., τ = ϕ(t) =
at+ b

ct+ d
.

Then by Proposition 2, gϕ(t0, t1) ≡ 0. Substituting this into (5.2), we have

ḡ (ϕ(t0), ϕ(t1))ϕ
′(t0)ϕ

′(t1) = g(t0, t1), (5.6)

where τi = ϕ(ti), i = 0, 1. Using (5.5), we compare the coefficients of the
first terms in the Taylor expansions of both sides of (5.6). As a result, we
obtain

β̄0,2(ϕ(t0))(ϕ
′(t0))

4 = β0,2(t0)

or

β̄0,2(τ)(dτ)
4 = β0,2(t)(dt)

4. (5.7)

This means that the form β0,2(t)(dt)
4 does not depend on the choice of

the projective parameter t. This form is said to be a fundamental form of
the curve Λ(·) and is denoted by A.
If t is an arbitrary (not necessarily projective) parameter on the curve

Λ(·), then the fundamental form A in this parameter should have the form
A(t)(dt)4, whereA(t) is a smooth function (the “density” of the fundamental
form).
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Lemma 5.1. For an arbitrary parameter t, the density A(t) of the fun-
damental form satisfies the relation

A(t) = β0,2(t)−
3

5k
ρ(t)2 −

3

20
ρ′′(t) (5.8)

or, equivalently,

A(t) =

(
1

10

(
∂

∂t0
+

∂

∂t1

)2
−
1

2

∂2

∂t0∂t1

)
g(t0, t1)

∣∣∣∣
t0=t1=t

−

−
3

5k
g(t, t)2. (5.9)

Proof. Let τ = ϕ(t) be a reparametrization such that τ is a projective
parameter. It means that ϕ(τ) satisfies Eq. (5.4). Denote by βϕi,j(t0, t1) the
coefficients defined by (4.11), (4.14), and (4.16) with St replaced by ϕ(t).
Using (5.5), compare the coefficients of the first terms in the Taylor

expansions of both sides of (5.6). As a result, we obtain

β̄0,2(ϕ(t0))(ϕ
′(t0))

4 = β0,2(t0)− kβϕ0,2(t0)

or

A = β̄0,2(τ)(dτ)
4 =
(
β0,2(t)− kβϕ0,2(t)

)
(dt)4. (5.10)

To complete the proof, it remains to compute the coefficient βϕ0,2(t0). For
this we will use the recursive formula (4.30), where Bi are defined by (4.29)
with βϕ0,i instead of β0,2. From (4.30) it follows that

B2(t) =
1

4
B′1(t),

B3(t) =
1

5

(
B′2(t)− (B1(t))

2
)
=

1

20
B′′1 (t)−

1

5
(B1(t))

2. (5.11)

From (4.28), (4.29), and (5.4) it follows that

B1(t) = −β
ϕ
0,0(t) = −

1

3
S (ϕ(t)) = −

ρ(t)

k
.

Then by (4.30) and (5.11),

βϕ0,2(t) = −3B3(t) =
3

20k
ρ′′(t) +

3

5k2
ρ(t)2.

This, together with (5.10), implies (5.8). To obtain (5.9), we rewrite
(5.8), taking into account the connection between the function g(t0, t1) and
the functions ρ(t) (= β0,0(t)) and β0,2(t) given by expansion (4.16) (rela-
tion (5.9) is the most symmetric one w.r.t. t0 and t1).
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If A(t) does not change sign, then the canonical length element |A(t)|
1
4 dt

is defined on Λ(·). The corresponding parameter τ (i.e., the length with
respect to this length element) is called a normal parameter (in particu-
lar, this implies that abnormal extremals may have the canonical (normal)
parametrization). Calculating the Ricci curvature ρn(τ) of Λ(·) in the nor-
mal parameter, we obtain a functional invariant of the nonparametrized
curve. It is called projective curvature of the nonparametrized curve Λ(·).
If t = ϕ(τ) is the transition function between a projective parameter t and

the normal parameter τ , then by (5.4) it follows that ρn(τ) =
k

3
S (ϕ(τ)).

At the end of this section we give an explicit formula for the fundamental
form of the regular curve in terms of its curvature operator. We note first

that by definition the weight k of the regular curve is equal to
1

2
dim W

(one can also derive it from (3.2) and (4.21)).

Lemma 5.2. The fundamental form A of the regular curve Λ(t) in the
Lagrange Grassmannian L(W ) satisfies the relation

A =
1

15

(
tr
(
R(t)2
)
−
1

k

(
trR(t)

)2)
(dt)4, (5.12)

where R(t) is the curvature operator of Λ(t) defined by (3.1) and k =
1

2
dim W .

Proof. Let us compute β0,2(t). We will use the notation of (2.2) and (2.3).
By (4.22),

β0,2(t) = −3tr(Q3(t)Λ̇(t)) = −3tr(A3(t)Ṡ(t)). (5.13)

For a given t̄, we choose for simplicity a coordinate representation St of
the curve Λ(t) such that A0(t̄) = 0. Then by (3.3),

A3(t̄) =
1

5

(
Ȧ2(t̄)−A1(t̄)Ṡt̄A1(t̄)

)
. (5.14)

From (3.4) it follows that the condition A0(t̄) = 0 is equivalent to S̈t̄ = 0.

This implies that Ȧ2(t̄)Ṡt̄ =
d

dt
(A2(t)Ṡt)

∣∣∣
t=t̄

. Therefore, multiplying (5.14)

by St̄ and taking the trace from both sides, we obtain

tr
(
A3(t̄)Ṡt̄

)
=
1

5

d

dt
tr
(
A2(t̄)Ṡt̄

)
−
1

5
tr
(
(A1(t̄)Ṡt̄)

2
)
. (5.15)

Now by (4.22) and (4.18),

tr
(
A2(t̄)Ṡt̄

)
= −

1

2
β0,1(t̄) = −

1

4
ρ′(t̄). (5.16)
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On the other hand, by (3.6) (A1(t̄)Ṡt̄) = −
1

3
R(t̄). This and (5.16) imply

that (5.15) can be written in the form

tr
(
A3(t̄)Ṡt̄

)
= −

1

20
ρ′′(t̄)−

1

45
tr
(
R(t̄)2
)
.

Taking into account (5.14), we obtain by (5.8) that

A(t̄) =
3

20
ρ′′(t̄) +

1

15
tr
(
R(t̄)2
)
−

3

5k
ρ(t̄)2 −

3

20
ρ′′(t̄) =

=
1

15
tr
(
R(t̄)2
)
−

3

5k
ρ(t̄)2.

Finally, note that ρ =
1

3
trR (see (4.27)). Substituting this into the last

relation, we obtain (5.12).

Note that in the scalar case (i.e., when dim W = 2) the fundamental
form A is identically equal to zero.

Remark 2. All constructions of Secs. 3–5 can be made for the curve in
the Grassmannian G(m, 2m) (the set of all m-dimensional subspaces in the
2m-dimensional linear space) instead of the Lagrangian Grassmannian by
the action of the group GL(2m) instead of the symplectic group.

6. The rank 1 curves: preliminary steps.

In the present section we begin a systematic study of the curves of rank
1 in the Lagrange Grassmannian L(W ) with dimW = m. We consider a
rank 1 ample curve Λ : I �→ L(W ) with, possibly, a nonconstant weight,
where I is some interval on the real line. We introduce a canonical basis
on each subspace Λ(t) and compute some characteristics of the curve, in
particular, its weight at any point. Finally, we show that the curve Λ has
the constant weight equal to m2 on the set with a discrete complement in
I. All this will prepare us to the next section, where the curves of rank 1
and constant weight will be investigated.
Without loss of generality, suppose that Λ(τ) is monotone ally nonde-

creasing, i.e., the velocities Λ̇(t) are nonnegtive definite quadratic forms. As
in Sec. 2, let Λτ (t) be the identical imbedding of Λ(t) into the affine space

Λ(τ)�. The velocity
∂

∂t
Λτ (t) is a well-defined self-adjoint linear mapping

from Λ(τ)∗ to Λ(τ), i.e., an element of Sym2Λ(τ). Moreover, by our assump-

tions,
∂

∂t
Λτ (t) is a nonpositive self-adjoint linear mapping of rank 1. There-

fore, for t �= τ there exists a unique, up to the sign, vector w(t, τ) ∈ Λ(τ)
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such that for any v ∈ Λ(τ)∗〈
v,

∂

∂t
Λτ (t)v

〉
= −〈v, w(t, τ)〉2. (6.1)

Remark 3. From the definition of w(t, τ) it easily follows that for given
τ the germ of the curve Λ(t) at t = τ is defined uniquely by Λ(τ), the
derivative subspace Λ0(τ), and the germ of the function t �→ w(t, τ) at
t = τ . Since the symplectic group acts transitively on the set of pairs of
transversal Lagrange subspaces, one can conclude that the germ of the curve
Λ(t) at t = τ is defined uniquely, up to a symplectic transformation, by the
germ of the function t �→ w(t, τ) at t = τ .

The function t �→ Λτ (t) has a pole at t = τ . This easily implies that the
function t �→ w(t, τ) also has a pole at t = τ . Suppose that the order of this
pole is equal to l(τ).
Denote by u(t, τ) the normalized curve t → u(t, τ) = (t − τ)l(τ)w(t, τ)

and define the following vectors in Λ(τ):

ej(τ) =
1

(j − 1)!

∂j−1

∂tj−1
u(t, τ)

∣∣∣∣
t=τ

. (6.2)

We note first that

span
(
{ej(τ)}

∞
j=1

)
= Λ(τ). (6.3)

Otherwise, using the relation

w(t, τ) =

j∑
i=1

ei(τ)(t − τ)i−1−l +O((t− τ)i−l),

one can easily obtain the contradiction to the fact that Λ(t) is ample.
Thus for a given parameter τ and integer i, 1 ≤ i ≤ m, the following

integers ki(τ) are well defined:

ki(τ) = min
{
j ∈ N ∪ 0 :

dim (span (e1(τ), e2(τ), . . . , ej+1(τ))) = i
}
. (6.4)

Note that

0 = k1(τ) < k2(τ) < . . . < km(τ), ki(τ) ≥ i− 1. (6.5)

By definition, the vectors ek1(τ)+1(τ), . . . , ekm(τ)+1(τ) constitute the ba-
sis of the subspace Λ(τ). This basis is said to be a canonical basis of
Λ(τ). Since the vector w(t, τ) is defined up to the sign, the vector e1(τ)
(= ek1(τ)+1(τ)) is also defined up to the sign. Therefore, one can take also

(−ek1(τ)+1(τ), . . . ,−ekm(τ)+1(τ))
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as a canonical basis on the plane Λ(τ). Denote by wi(t, τ) the ith component
of the vector w(t, τ) w.r.t. this basis. In other words, functions wi(t, τ)
satisfy the relation

w(t, τ) =
m∑
i=1

wi(t, τ)eki(τ)+1(τ). (6.6)

Remark 4. Using Remark 3, one can easily conclude that the germ of the
curve Λ(t) at t = τ is defined uniquely by Λ(τ), the canonical basis in Λ(τ),
the derivative subspace Λ0(τ), and the germs of the functions t �→ wi(t, τ)
at t = τ , where 1 ≤ i ≤ m. Since for any two pairs (Λ,∆) and (Λ̃, ∆̃)
of transversal Lagrange subspaces with fixed bases in Λ and Λ̃ there exists
a symplectic transformation that transforms basis in Λ into the basis in Λ̃
and subspace ∆ into ∆̃, we have that the germ of the curve Λ(t) at t = τ
is defined uniquely, up to a symplectic transformation, by the germ of the
functions t �→ wi(t, τ) at t = τ , where 1 ≤ i ≤ m.

Now we prove a computational lemma about the weight of Λ(t) at τ and
the order of the pole of t �→ w(t, τ).

Lemma 6.1. The order l(τ) of the pole of the function t �→ w(t, τ) is
equal to km(τ)+1. The weight of the curve Λ(t) at τ is equal to (2 km(τ)+

1)m− 2
m∑
i=2

ki(τ).

Proof. For simplicity we will write ki instead of ki(τ) and l instead of l(τ).
Let St, Λ(t) = {(x, St x) : x ∈ Rm}, be a coordinate representation of the
germ of Λ(t) at t = τ such that the canonical basis ek1+1(τ), . . . , ekm+1(τ)
is a standard basis of Rm. Denote the subspace D ∈ Λ(τ)� by ∆ = 0⊕Rm.
From (6.2) it follows that

wi(t, τ) = (t− τ)ki−l +O((t − τ)ki−l+1) (6.7)

in the canonical basis.

Then relation (6.1) in the canonical basis can be rewritten in the form(
∂

∂t
(St − Sτ )

−1

)
i,j

= −wi(t, τ)wj(t, τ) = −(t− τ)ki+kj−2l +

+O((t− τ)ki+kj−2l+1). (6.8)

For simplicity take coordinates t �→ St such that the subspace ∆ is the
derivative subspace Λ0(τ). Then by definition of the derivative subspace,
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the free term on the Laurent expansion of (St − Sτ )
−1 is equal to zero.

Therefore,

(
(St − Sτ )

−1
)
i,j
= −

t∫
wi(ξ, τ)wj(ξ, τ) dξ =

(t− τ)2l−ki−kj−1

ki + kj − 2l + 1
+

+O((t − τ)ki+kj−2l+2). (6.9)

Then it is easy to obtain the following expansion for the determinant:

det(St − Sτ ) =
(t− τ)k

C
+O((t − τ)k+1), (6.10)

where

k = (2 l− 1)m− 2
m∑
i=2

ki (6.11)

and C is the determinant of the matrix whose (i, j)th entry is
1

2l− ki − kj − 1
, i, j = 1, . . . ,m. It is well known that the determinant

of the matrix whose (i, j)th entry is
1

xi + yj
, i, j = 1, . . . ,m, can be com-

puted by the formula

det

({
1

xi + yj

}m
i,j=1

)
=

∏
1≤i<j≤m

(xi − xj)(yi − yj)

m∏
i,j=1

(xi + yj)
. (6.12)

This implies in particular that C �= 0 (one can take xi = yi = l − ki −
1

2
and use the fact that ki �= kj for i �= j). Therefore, the weight is equal to

(2l − 1)m− 2
m∑
i=2

ki.

Further, from (6.9) and (6.12) it follows that

(St − Sτ )i,j =
(
Ci,j(t− τ)−k+2l−ki−kj−1+

+O((t − τ)−k+2l−ki−kj )
)((t− τ)k

C
+O((t− τ)k+1)

)
=

=
Ci,j

C
(t− τ)2l−ki−kj−1 +O((t − τ)2l−ki−kj ), (6.13)

where C is as in (6.10), k is as in (6.11), and Ci,j are (i, j)th entries of the

adjacent matrix to the matrix
( 1

2l − ki − kj − 1

)m
i,j=1

. By (6.12) and (6.5),
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Ci,j �= 0. Since St is a smooth curve at τ , all powers 2l − ki − kj − 1 in

(6.13) are positive. By assumption, Ṡτ �= 0. It implies that

min
1≤i,j≤m

(2l− ki − kj − 1) = 1. (6.14)

But from (6.5) it follows that min
1≤i,j≤m

(2l − ki − kj − 1) = 2l − 2km − 1,

which yields l = km+1. Consequently, the weight is equal to (2 km+1)m−

2
m∑
i=2

ki.

Remark 5. In the proof of the previous lemma we have taken the coor-
dinate representation t �→ St, Λ(t) =

{
(x, St x) : x ∈ Rm

}
with ∆ = Λ0(τ)

(where ∆ = 0⊕Rm) in order to obtain asymptotics (6.9). But then we have
obtained relation (6.14) which implies that ki(τ) + kj(τ)− 2l(τ)+ 1 < 0 for
any i, j = 1, . . . ,m. Therefore, asymptotics (6.9) for

(
(St − Sτ )

−1
)
i,j

and,

therefore, asymptotics (6.13) for (St − Sτ )i,j are valid for any coordinate
representation t �→ St, Λ(t) =

{
(x, St x) : x ∈ Rm

}
, of the germ of Λ(t)

at t = τ such that the canonical basis ek1+1(τ), . . . , ekm+1(τ) is a standard
basis of Rm and ∆ = 0⊕ Rm is an arbitrary subspace transversal to Λ(τ).
The reason is that asymptotics (6.9) do not depend on the free term.

Take some subspace ∆ ∈ Λ(τ)�. Recall that the velocity Λ̇(t) is a self-
adjoint nonnegative definite linear mapping of rank 1 from Λ(t) to Λ(t)∗.
For any t sufficiently close to τ one can identify ∆ with Λ(t)∗. Under this
identification Λ̇(t) is a self-adjoint nonnegative linear mapping of rank 1 from
Λ(t) to ∆. Therefore, there exists a unique, up to sign, vector v(t) ∈ ∆ such
that for any w ∈ Λ(t):

〈Λ̇(t)w,w〉 = 〈v(t), w〉2. (6.15)

Suppose that a tuple of vectors f1(τ), . . . , fm(τ) is a basis of ∆ dual to the
canonical basis of Λ(τ) (i.e., σ(fi(τ), ekj(τ)+1(τ)) = δi,j). From Remark 5
and relation (6.13) (where l = km + 1) it follows that the components
vi(t) of the vector v(t) w.r.t. the basis f1(τ), . . . , fm(τ) have the following
asymptotics:

vi(t) = ci(τ)(t − τ)km(τ)−ki(τ) +O
(
(t− τ)km(τ)−ki(τ)+1

)
, (6.16)
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where ci(τ) �= 0. (Actually, using (6.12), one can compute ci(τ):

ci(τ) =

√
Ci,i(τ)(2(km(τ)− ki(τ)) + 1)

C(τ)
=

=

m∏
j=1

(2km(τ) − ki(τ) − kj(τ) + 1)∏
1≤j≤m, j �=i

(ki(τ) − kj(τ))
, (6.17)

where Ci,i and C are as in the proof of Lemma 6.1.) Relation (6.16) implies
that the relation

span(v(τ), v′(τ), . . . , v(j)(τ)) = span(fi(τ), . . . , fm(τ)) (6.18)

holds for any integer nonnegative j such that

km(τ) − ki(τ) ≤ j < km(τ)− ki−1(τ). (6.19)

In particular,

span(v(τ), v′(τ), . . . , v(km(τ)−1)(τ)) =

= span(f2(τ), . . . , fm(τ)) � ∆, (6.20)

span(v(τ), v′(τ), . . . , v(km(τ))(τ)) = ∆ (6.21)

(recall that k1(τ) = 0).

Now we are ready to prove the following proposition

Proposition 3. For the ample curve Λ : I �→ L(W ) of rank 1 the set C
such that

C = {t ∈ I : dim (span (e1(t), e2(t), . . . , em(t))) < m} (6.22)

is a discrete set of the interval of definition I.

Proof. Suppose that C has an accumulation point τ . Take some subspace
∆ ∈ Λ(τ)�. Let t �→ v(t) be a curve of vectors in ∆ defined by (6.15) for
all t from some neighborhood U of τ in I. Note that t ∈ C iff km(t) ≥ m.
Therefore, by (6.20) and (6.21) we have that t0 ∈ C ∩ U iff the function

d(t)
def
= det(v(t), v′(t), . . . v(m−1)(t)) has a zero at t = t0. For the accumula-

tion point τ , using consequently the Rolle theorem, one can conclude that
the function d(t) has a zero of infinite order at t = τ .
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On the other hand, let li(τ)
def
= km(τ)− km−i+1(τ). Denote p =

m∑
i=1

li(τ).

Let us prove that d(p)(τ) is not equal to zero. Indeed, d(p)(τ) can be ex-
pressed as a sum of the terms of the form det(v(j1)(τ), . . . , v(jm)(τ)), where

m∑
i=1

ji = p, 0 ≤ j1 < j2 < . . . < jm. (6.23)

Let us show that if the tuple (j1, . . . , jm) is different from the tuple (l1(τ),
. . . , lm(τ)) and satisfies (6.23), then

det(v(j1)(τ), . . . , v(jm)(τ)) = 0. (6.24)

For this, we first note that by assumptions there exists an index s such that
js < ls(τ) (= km(τ)− km−s+1(τ)). Then we have from (6.19) and (6.18)

span(v(j1)(τ), . . . , v(js)(τ)) ⊂ span(fm−s+2(τ), . . . , fm(τ)),

i.e., dim
(
span(v(j1)(τ), . . . , v(js)(τ))

)
< s. This implies that

dim
(
span(v(j1)(τ), . . . , v(jm)(τ))

)
< m which is equivalent to (6.24).

Also, we note that it easily follows from (6.19) and (6.18) that
span
(
v(l1(τ))(τ), . . . , v(lm(τ))(τ)

)
= ∆. Therefore,

d(p)(τ) = c det(v(l1(τ))(τ), . . . , v(lm(τ))(τ)) �= 0

(here c is some natural number). Hence d(t) has a zero of finite order at
t = τ . We obtain the contradiction.

For t ∈ I\C, the numbers ki(t) = i− 1. As a consequence of the previous
proposition and the relation for the weight from Lemma 6.1, we obtain the
following corollary.

Corollary 1. The ample curve Λ : I �→ L(W ) of rank 1 has the constant
weight equal to m2 on the set with a discrete complement in I.

At the end of this section we give an explicit formula for the velocity
Λ̇(τ) in the canonical basis. Let (e∗1(τ), . . . , e

∗
m(τ)) be a basis in Λ(τ)

∗ dual
to the canonical basis in Λ(τ). As we have seen at the end of the proof of
Lemma 6.1, the (m,m)th entry is the only nonzero entry of the matrix Ṡτ

and is equal to
Cm,m(τ)

C(τ)
= c2m(τ) (where cm(τ) is as in (6.17)). Therefore,

we obtain the following lemma.

Lemma 6.2. For any v1, v2 ∈ Λ(τ) the following relation holds :

〈Λ̇(τ)v1, v2〉 = c2m(τ)〈e
∗
m(τ), v1〉〈e

∗
m(τ), v2〉, (6.25)
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where

cm(τ) =
m−1∏
j=1

km(τ) − kj(τ) + 1

km(τ) − kj(τ)
. (6.26)

7. The rank 1 curves with a constant weight

This section is devoted to the curves of rank 1 and a constant finite
weight in the Lagrange Grassmannian L(W ). We show that in this case
the function g(t, τ) constructed in Sec. 4 defines the curve uniquely, up to
a symplectic transformation. We also find a complete system of invariants
of the curve in terms of the function g.
First, using Proposition 3 and Lemma 6.1, we obtain the following propo-

sition.

Proposition 4. If Λ(t) is a curve of rank 1 and a constant weight on
I, then for all t ∈ I and 1 ≤ i ≤ m the numbers ki(t) are equal to i − 1,
or, equivalently, the vectors e1(t), . . . , em(t) constitute the canonical basis
of the subspace Λ(t).

Proof. From (6.5) it follows that always

ki(t)− kj(t) ≥ i− j, k1(t) = 0. (7.1)

Therefore, by Lemma 6.1 the weight k(t) of the curve Λ at the point t
satisfies the relation

k(t) = (2km(t) + 1)m− 2
m∑
i=2

ki(t) =

= 2
m∑
i=1

(km(t)− ki(t)) +m ≥ 2
m∑
i=1

(m− i) +m = m2.
(7.2)

In addition, from (7.1) it is easy to see that the equality in (7.2) holds iff
ki(t) = i− 1 for any 1 ≤ i ≤ m. Therefore, if the set C is as in (6.22), then
for any t ∈ C the weight k(t) > m2, while for t /∈ C the weight k(t) = m2.
But by Proposition 3 the set C is a discrete subset of I. Hence, the set C
should be empty for the weight k(t) to be constant on I. This completes
the proof of the proposition.

As a consequence of the previous proposition and Lemmas 6.1 and 6.2,
we easily obtain the following corollary.

Corollary 2. If Λ(t) is a curve of rank 1 and a constant weight on I,
then:
(1) the weight is equal to m2 at any point t ∈ I;
(2) for any τ ∈ I the function t �→ w(t, τ) has a pole of order m at t = τ ;
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(3) for any v1, v2 ∈ Λ(τ) the following relation holds :

〈Λ̇(τ)v1, v2〉 = m2〈e∗m(τ), v1〉〈e
∗
m(τ), v2〉. (7.3)

Now we prove that the function g(t, τ) defined in Sec. 4 contains all
information about Λ(t).

Theorem 1. The function g(t, τ) defines the curve Λ(t) of rank 1 and a
constant weight uniquely, up to a symplectic transformation.

Before starting to prove the theorem, we want to describe in few words
the main steps of the proof. First, we show that the function g(t, τ) is almost
the same as the component wm(t, τ) of the vector w(t, τ). The vector w(t, τ)
is a function of two variables, but it is defined by a curve. Therefore, it is
natural to expect that w(t, τ) satisfies some partial differential equation.
We find this equation that is actually the system of m equations for the
components wi(t, τ), 1 ≤ i ≤ m. Then we show that this system has a
“triangular” form such that all components wi(t, τ) can be expressed in
terms of wm(t, τ) and refer to Remark 4 to complete the proof.

7.1. Proof of Theorem 1.
1. We begin the proof with the following lemma.

Lemma 7.1. The following relation holds:

w2m(t, τ) =
1

(t− τ)2
+

1

m2
g(t, τ). (7.4)

Proof. By (4.20), (4.23), and item (2) of Corollary 4 we have

tr

(
∂

∂t
Λτ (t) ◦ Λ̇(τ)

)
= −

m2

(t− τ)2
− g(t, τ). (7.5)

Let t → St, Λ(t) =
{
(x, St x) : x ∈ Rm

}
be a coordinate representation of

the germ of Λ(t) at t = τ such that the canonical basis e1(τ), . . . , em(τ) is
a standard basis of Rm. By (4.24),

tr

(
∂

∂t

(
(St − Sτ )

−1

)
Ṡτ

)
= −

m2

(t− τ)2
− g(t, τ). (7.6)

Relation (7.3) implies that in the chosen coordinates

Ṡτ =

{
0, (i, j) �= (m,m),

m2, (i, j) = m.

By construction,(
∂

∂t

(
(St − Sτ )

−1

))
i,j

= −wi(t, τ)wj(t, τ).
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Therefore,

tr

(
∂

∂t

(
(St − Sτ )

−1

)
Ṡτ

)
= −m2w2m(t, τ).

This together with (7.6) implies (7.4).

By (7.4) it follows that in order to prove the theorem it is sufficient to
show that the function wm(t, τ) defines Λ(t) uniquely, up to a symplectic
transformation.
2. Now we derive a partial differential equation for the vector function

w(t, τ).

Lemma 7.2. The vector function w(t, τ) satisfies the following differen-
tial equation:

∂2w

∂t∂τ
−

(
∂wm
∂t

wm

)
∂w

∂τ
+m2w2mw = 0. (7.7)

Proof. We fix some parameter τ0 and take some subspace ∆ transversal to
Λ(τ0). Let t→ St, Λ(t) = {(x, St x) : x ∈ Rm} be a coordinate representa-
tion of the germ of Λ(t) at t = τ0 such that Λ(τ0) = R

m⊕0 and ∆ = 0⊕Rm.
Denote by w∆(t, τ) ∈ Rm the first m components of the vector w(t, τ) in
the chosen coordinates (or equivalently, the image of w(t, τ) under the pro-
jection of W on Λ(τ0) parallel to ∆). Also, let, as before, f1(τ), . . . , fm(τ)
be the basis of ∆ dual to the canonical basis of Λ(τ) (w.r.t. the symplectic
form σ).
By (6.1), it follows that for t and τ close to τ0

∂

∂t

(
(St − Sτ )

−1
)
= −w∆(t, τ)w∆(t, τ)T . (7.8)

Therefore,

Ṡt =
(
(St − Sτ )w

∆(t, τ)
) (
(St − Sτ )w

∆(t, τ)
)T

. (7.9)

This implies that the vector function (St−Sτ )w
∆(t, τ) does not depend on

τ . Differentiating it w.r.t. τ , we obtain

− Ṡτw
∆(t, τ) + (St − Sτ )

∂

∂τ
w∆(t, τ) = 0. (7.10)

From (6.25) it follows that

Ṡτw
∆(t, τ) = m2wm(t, τ)fm(τ). (7.11)

This together with (7.10) implies that

∂

∂τ
w∆(t, τ) = m2wm(t, τ)(St − Sτ )

−1fm(τ). (7.12)
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In particular,

m2(St − Sτ )
−1fm(τ) =

1

wm(t, τ)

∂

∂τ
w∆(t, τ). (7.13)

Now, differentiating (7.12) w.r.t. t, we have

∂2

∂t∂τ
w∆(t, τ) = m2wm(t, τ)

∂

∂t

(
(St − Sτ )

−1
)
fm(τ) +

+
∂

∂t
wm(t, τ)m

2(St − Sτ )
−1fm(τ). (7.14)

From (7.8) it follows that

(St − Sτ )
−1fm(τ) = −wm(t, τ)w

∆(t, τ).

Substituting this and (7.13) into (7.14), we obtain

∂2w∆

∂t∂τ
−

(
∂wm
∂t

wm

)
∂w∆

∂τ
+m2w2mw

∆ = 0. (7.15)

Recalling the definition of w∆(t, τ), we obtain from the last equation the
following inclusion:

∂2w

∂t∂τ
−

(
∂wm
∂t

wm

)
∂w

∂τ
+m2w2mw ∈ ∆. (7.16)

Recall that all our considerations (and, in particular, inclusion (7.16))
are valid for any subspace ∆ transversal to Λ(τ0) and any t and τ close to
τ0. Taking as ∆ in (7.16) two subspaces that are transversal to Λ(τ0) and
also transversal one to another, we obtain (7.7) for any t and τ close to τ0.
Since τ0 is arbitrary, this completes the proof of the lemma.

In the sequel it is also convenient to make the following substitution
in (7.7):

Y (t, τ) =
1

wm(t, τ)
w(t, τ). (7.17)

Then by a direct computation one can obtain the following equation for Y :

∂2Y

∂t∂τ
+

(
∂wm
∂τ

wm

)
∂Y

∂t
+

(
∂2

∂t∂τ
(lnwm) +m2w2m

)
Y = 0. (7.18)

3. Now we rewrite Eq. (7.7) as a system of equations w.r.t. the compo-
nents wi(t, τ). Take some subspace ∆ ∈ Λ(τ)�. Identifying ∆ with Λ(τ)∗,
denote by fi(τ) the vector, corresponding to e

∗
i (τ) under this identification.
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The vectors e1(τ), . . . , em(τ), f1(τ), . . . , fm(τ) constitute the basis of the
symplectic space W . Suppose that

ėi(τ) =
m∑
j=1

αi,j(τ)ej(τ) + γi,j(τ)fj(τ).

According to (7.3),

γij(τ) =

{
0, (i, j) �= (m,m),

m2, (i, j) = (m,m).

This implies that

ėi(τ) =
m∑
j=1

αi,j(τ)ej(τ), 1 ≤ i ≤ m− 1,

ėm(τ) =
m∑
j=1

αm,j(τ)ej(τ) +m2fm(τ).

(7.19)

Remark 6. In particular, it follows that the functions αi,j(τ) with 1 ≤
i ≤ m− 1 do not depend on the choice of the subspace ∆.

By definition,

w(t, τ) =
m∑
i=1

wi(t, τ)ei(τ).

Then, using (7.19), we obtain

∂w

∂τ
=

m∑
i=1

(
∂wi

∂τ
+
m∑
j=1

wjαj,i

)
ei +m2wmfm, (7.20)

∂2w

∂t∂τ
=

m∑
i=1

(
∂2wi

∂t∂τ
+
m∑
j=1

∂wj

∂t
αj,i

)
ei +m2 ∂wm

∂t
fm. (7.21)

Substituting (7.20) and (7.21) into (7.7) and comparing coefficients of ei
for i = 1, . . . ,m, we obtain the following system of equations:

∂2wi

∂t∂τ
−
∂wm
∂t

wm

∂wi

∂τ
+m2w2mwi =

m∑
j=1

( ∂wm
∂t

wm
wj −

∂wj

∂t

)
αj,i,

1 ≤ i ≤ m.

(7.22)
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The term in the right-hand side of (7.22), corresponding to j = m, is
equal to zero. Hence Eq. (7.22) can be written in the form

∂2wi

∂t∂τ
−
∂wm
∂t

wm

∂wi

∂τ
+m2w2mwi =

=
m−1∑
j=1

(
∂wm
∂t

wm
wj −

∂wj

∂t

)
αj,i, 1 ≤ i ≤ m. (7.23)

By Remark 6, the system of Eqs. (7.23) does not depend on the choice of
the subspace ∆.
In the same way Eq. (7.17) can be rewritten as an equation for compo-

nents Yi(t, τ) =
wi(t, τ)

wm(t, τ)
of the vector Yi(t, τ) w.r.t. the canonical basis:

∂2Yi

∂t∂τ
+

(
∂wm
∂τ

wm

)
∂Yi

∂t
+

(
∂2

∂t∂τ
(lnwm) +m2w2m

)
Yi =

= −
m−1∑
j=1

∂Yj

∂t
αj,i. (7.24)

4. Now we show that Eq. (7.23) (or (7.24)) has a “triangular” form.
Note that by construction all functions t �→ w(t, τ) have singularities at
t = τ . Moreover, from item (1) of Corollary 4 it follows that their Laurent
expansions at t = τ have the form

wi(t, τ) =
1

(t− τ)m−i+1
+ ϕi(t, τ), (7.25)

where ϕi(t, τ) are smooth functions. Using this fact, one can obtain the
following lemma.

Lemma 7.3. The coefficients αj,i(τ), 1 ≤ j ≤ m−1, satisfy the relations

1. αj,i(τ) ≡ 0 if j < i− 1;

2. αi−1,i(τ) ≡
(i− 1)(2m− i+ 1)

m− i+ 1
;

3. if i ≤ j ≤ m − 1, then αj,i(τ) can be expressed in terms of
∂k

∂tk
ϕm(t, τ)

∣∣∣
t=τ

with 0 ≤ k ≤ i − j, where ϕm(t, τ) is defined

by (7.25).

Proof. We will analyze the Laurent expansions of both sides of Eq. (7.23).
We begin with the right-hand side. We denote

Φm(t, τ) =
∂

∂t
ln
(
1 + (t− τ)ϕm(t, τ)

)
. (7.26)
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Using (7.25), one can obtain the following series of relations:

∂

∂t
wj(t, τ) = −

m− j + 1

(t− τ)m−j+2
+O(1); (7.27)

∂
∂t
wm

wm
=

∂

∂t
lnwm(t, τ) =

∂

∂t
ln

(
1

t− τ
+ ϕm(t, τ)

)
=

= −
1

t− τ
+Φm(t, τ); (7.28)

∂
∂t
wm

wm
wj = −

1

(t− τ)m−j+2
+

Φm(t, τ)

(t− τ)m−j+1
+O

(
1

t− τ

)
. (7.29)

Therefore, the right-hand side of (7.23) can be written in the form

m−1∑
j=1

(
m− j

(t− τ)m−j+2
+

Φm(t, τ)

(t− τ)m−j+1

)
αj,i(τ) +

+O

(
1

t− τ

)
. (7.30)

Suppose that the function t �→ Φm(t, τ) has the following expansion into
the formal Taylor series at t = τ :

Φm(t, τ) ≈
∞∑
k=0

ck(τ)(t − τ)k. (7.31)

Then by a direct computation we obtain that the right-hand side of (7.23)
has the form

α1,i(τ)

(t− τ)m+1
+
m−1∑
j=2

(m− j)αj,i(τ) +
j−1∑
k=1

cj−k−1(τ)αk,i(τ)

(t− τ)m−j+2
+

+O

(
1

(t− τ)2

)
. (7.32)

Now we consider the left-hand side of (7.23). Using (7.26) and (7.25), we
obtain the following series of relations:

∂

∂τ
wi(t, τ) =

m− i+ 1

(t− τ)m−i+2
+

∂

∂τ
ϕi(t, τ); (7.33)

∂2

∂t∂τ
wi(t, τ) = −

(m− i+ 1)(m− i+ 2)

(t− τ)m−i+3
+O(1); (7.34)

∂
∂t
wm

wm

∂

∂τ
wi(t, τ) = −

m− i+ 1

(t− τ)m−i+3
+
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+
Φm(t, τ)

(t− τ)m−i+2
+O

(
1

t− τ

)
; (7.35)

wm(t, τ)wi(t, τ) =
1

(t− τ)m−i+3
+

2ϕm(t, τ)

(t− τ)m−i+2
+

+
ϕ2m(t, τ)

(t− τ)m−i+1
+O

(
1

(t− τ)2

)
. (7.36)

Therefore, the left-hand side of (7.23) can be written in the form

m2 − (m− i+ 1)2

(t− τ)m−i+3
+

1

(t− τ)m−i+2

(
Φm(t, τ) + 2ϕm(t, τ)

)
+

+
ϕ2m(t, τ)

(t− τ)m−i+1
+O

(
1

(t− τ)2

)
. (7.37)

Comparing coefficients of (7.32) and (7.37), we have:

(1) if m − j + 2 > m − i + 3, i.e., j < i − 1, then αj,i(τ) ≡ 0. This
completes the proof of the first part of the lemma;

(2) if m− j +2 = m− i+3, i.e., j = i− 1, then αi−1,i(τ)(m− i+1) =
m2 − (m− i+ 1)2. This completes the proof of the second part of
the lemma;

(3) if 2 < m− j + 2 < m− i+ 3, i.e., i− 1 < j < m, then, taking into
account that αk,i(τ) ≡ 0 for k < i− 1, we obtain

(m− j)αj,i(τ) +

j−1∑
k=i−1

cj−k−1(τ)αki(τ) = cj−i(τ) +

+
2 ∂

j−i

∂tj−i
ϕm(t, τ)

∣∣∣
t=τ

(j − i)!
+

∂j−i+1

∂tj−i+1
ϕ2m(t, τ)

∣∣∣
t=τ

(j − i+ 1)!
. (7.38)

By (7.26), the coefficient cn(τ) can be expressed in terms of
∂k

∂tk
ϕm(t, τ)

∣∣∣
t=τ

with 0 ≤ k ≤ n. This together with (7.38) completes the proof of the third
part of the lemma.

By the previous lemma, Eq. (7.24) can be written for 2 ≤ i ≤ m in the
form

∂Yi−1

∂t
= −

1

αi−1,i

(
∂2Yi

∂t∂τ
+

( ∂wm
∂τ

wm

)
∂Yi

∂t
+

+

(
∂2

∂t∂τ
(lnwm) +m2w2m

)
Yi +

m−1∑
j=i

∂Yj

∂t
αj,i

)
. (7.39)
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where αi−1,i =
(i− 1)(2m− i+ 1)

m− i+ 1
. All terms in the right-hand side

of (7.39) depend on the functions Yj(t, τ) with j ≥ i. Also we note that by
(7.25)

Yi(t, τ) =
wi(t, τ)

wm(t, τ)
=

1

(t− τ)m−i
1 + (t− τ)m−i+1ϕi(t, τ)

1 + (t− τ)ϕm(t, τ)
. (7.40)

This implies that in the Laurent expansion of the function t �→ Y (t, τ)
at t = τ all coefficients that correspond to nonpositive powers (and, in
particular, the free term) depend on wm(t, τ). This together with (7.39)
yields that all Yi(t, τ) (and, therefore, all wi(t, τ)) with 1 ≤ i ≤ m − 1
can be expressed in terms of wm(t, τ). But by Remark 4 the components
wi(t, τ), 1 ≤ i ≤ m, define the curve Λ(t) uniquely, up to a symplectic
transformation. This completes the proof of Theorem 1.
Now our goal is to find a complete system of symplectic invariants of the

curve Λ(t) of rank 1 and the constant weight, i.e., some set of functions
of t which defines Λ(t) uniquely, up to a symplectic transformation. By
Theorem 1 it is natural to look for a complete system of invariants among
coefficients βi,j(t) of expansion (4.16) of g into the Taylor series. Since
Λ(t) can be described, up to a symplectic transformation, by the curve
t→ w(t, τ) of the vectors on the linear space of dimensionm, it is natural to
expect that a complete system of invariants of Λ(·) consists of m functions
of t. By Lemma 4.1, the first m “independent” coefficients in expansion
(4.16) are β0,2i(t) with 0 ≤ i ≤ m − 1. All these arguments lead to the
following theorem.

Theorem 2. The coefficients β0,2i(t), 0 ≤ i ≤ m − 1, define the curve
Λ(t) of rank 1 and a constant weight uniquely, up to a symplectic transfor-
mation.

Let a function ϕm(t, τ) be as in (7.25). From identity (7.4) it easily
follows that this theorem is equivalent to the following theorem.

Theorem 2′. The functions τ �→
∂2i−1ϕm(t, τ)

∂t2i−1

∣∣∣
t=τ

, 1 ≤ i ≤ m, define

the curve Λ(t) of rank 1 and a constant weight uniquely, up to a symplectic
transformation.

Proof of Theorem 2′. Let functions ϕi(t, τ), 1 ≤ i ≤ m, be as in (7.25).
First, using the system of equations (7.23), we prove the following lemma.

Lemma 7.4. All partial derivatives of the functions ϕi(t, τ), 1 ≤ i ≤ m,
at any diagonal point (τ, τ) can be expressed in terms of the functions τ �→
∂2j−1ϕm

∂t2j−1
(t, τ)
∣∣
t=τ

and their derivatives, where 1 ≤ j ≤ m.
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Proof. First, it is natural to make the change of coordinates x = t − τ ,
y = t + τ such that the diagonal t = τ becomes the axis x = 0 in the

new coordinates. Indeed, if we denote zi(x, y) = wi

(x+ y

2
,
y − x

2

)
, then

system (7.23) can be transformed into the following system w.r.t. zi:

−zm

(
∂2zi

∂x2
−

∂2zi

∂y2

)
−

(
∂zm

∂x
+

∂zm

∂y

)(
∂zi

∂y
−

∂zi

∂x

)
+m2z3mzi =

=
m−1∑
j=i−1

((
∂zm

∂x
+

∂zm

∂y

)
zj −

(
∂zj

∂x
+

∂zj

∂y

)
zm

)
αji, 1 ≤ i ≤ m

(7.41)

(here we also have used the first part of Lemma 7.3). Relations (7.25) can
be transformed into the relations

zi(x, y) =
1

xm−i+1
ui(x, y), (7.42)

where the functions ui(x, y) are smooth, ui(0, y) ≡ 1, and
∂k

∂xk
ui(0, y) = 0

for 1 ≤ i ≤ m, 1 ≤ k ≤ m − i. Substitute (7.42) into (7.41) and multiply
both sides by xm−i+4. Then we obtain some singular system of equations
w.r.t. ui. By a direct calculation it can be shown that this system has the
following form:

x2um
∂2ui

∂x2
− (2m− 2i+ 1)xum

∂ui

∂x
+ (m− i+ 1)xui

∂um

∂x
+

+ αi−1,ixui−1
∂um

∂x
− αi−1,ixum

∂ui−1

∂x
+ (m− i+ 1)2umui +

+ αi−1,i(m− i+ 1)ui−1um −m2u3mui = Ψi, (7.43)

where

Ψi = x2um
∂2ui

∂y2
+ xum

∂ui

∂y
− (m− i+ 1)xui

∂um

∂y
−

− αi−1,ixui−1
∂um

∂y
+

+ αi−1,ixum
∂ui−1

∂y
− x2
(
∂um

∂x
+

∂um

∂y

)(
∂ui

∂y
−

∂ui

∂x

)
−

−
m−1∑
j=i

(
xj−i+2

(
∂um

∂x
+

∂um

∂y

)
uj − xj−i+2

(
∂uj

∂x
+

∂uj

∂y

)
um +

+ (m− j)xj−i+1umuj

)
αji. (7.44)
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The left-hand side of Eq. (7.43) is a principal part of this equation in the
following sense: differentiate both sides of (7.43) k times in x at the points of
the initial curve x = 0. Then the right-hand side can be expressed in terms

of the partial derivatives
∂nup

∂xn
(0, y) with n less than k and their derivatives

w.r.t. y (here one can take i− 1 ≤ p ≤ m), while any term of the left-hand
side (at least for k ≥ 2) depends also on a partial derivative of some uj
w.r.t. x of order k at (0, y). Moreover, using the fact that ui(0, y) ≡ 1,

1 ≤ i ≤ m, and αi−1,i =
(2m− i+ 1)(i− 1)

m− i+ 1
, one can easily obtain in this

way the following linear system w.r.t.
∂k

∂xk
ui(0, y), 1 ≤ i ≤ m, for a given

integer k ≥ 0:

ζi(k)
∂kui−1

∂xk
(0, y) + ηi(k)

∂kui

∂xk
(0, y) + θi(k)

∂kum

∂xk
(0, y) = Ψ̃i,

1 ≤ i ≤ m,
(7.45)

where

ζi(k) =
(k + i−m− 1)(i− 2m− 1)(i− 1)

m− i+ 1
,

ηi(k) = (k + i− 1)(k + i− 2m− 1),

θi(k) =
k + 2i− 2− 2m

m− i+ 1
m2,

(7.46)

and Ψ̃i can be expressed in terms of the partial derivatives of the form
∂nup

∂xn
(0, y) with n less than k and their derivatives w.r.t. y (here i − 1 ≤

p ≤ m).

It turns out that the determinant of system (7.45) satisfies the following
remarkable identity:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η1(k) 0 0 . . . 0 0 θ1(k)
ζ2(k) η2(k) 0 . . . 0 0 θ2(k)
0 ζ3(k) η3(k) . . . 0 0 θ3(k)
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . ζm−1(k) ηm−1(k) θm−1(k)
0 0 0 . . . 0 ζm(k) ηm(k) + θm(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
m∏
j=1

(k − 2j)(k + 2j − 1). (7.47)
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The proof of (7.47) that we have found is rather long and will be presented
in Appendix.
As a consequence of (7.47), we obtain that the determinant of sys-

tem (7.45) has exactly m positive zeros at k = 2j, 1 ≤ j ≤ m. Therefore,
any partial derivative of ui, 1 ≤ i ≤ m, at (0, y) can be expressed in terms

of the functions y �→
∂2jup

∂x2j
(0, y) and their derivatives, where 1 ≤ j, p ≤ m.

Moreover, by Theorem 1 up(x, y) can be expressed in terms of um(x, y) and
its derivatives. Hence any partial derivative of ui, 1 ≤ i ≤ m, at (0, y) can

be expressed in terms of the functions y �→
∂2jum

∂x2j
(0, y) and their deriva-

tives, where 1 ≤ j ≤ m. But this is equivalent to the statement of our
lemma, if we return to the old coordinates t and τ .

Now we define a canonical moving frame: for given τ take the derivative
subspace Λ0(τ) and let f1(τ), . . . , fm(τ) be a basis of Λ0(τ) dual to the
canonical basis of Λ(τ) (i.e., σ(fi(τ), ej(τ)) = δi,j). The basis

(e1(τ), . . . , em(τ), f1(τ), . . . , fm(τ))

of the whole symplectic space W is called the canonical moving frame
of the curve Λ(·). Denote by E(τ) and F (τ) the tuples of vectors
(e1(τ), . . . , em(τ)) and (f1(τ), . . . , fm(τ)), respectively, arranged in the
columns. Denote by St the matrix, corresponding to the linear mapping
〈Λ(τ),Λ(t),Λ0(τ)〉 w.r.t. to the canonical basis, and by S0t the matrix, cor-
responding to the linear mapping 〈Λ0(τ),Λ0(t),Λ(τ)〉 w.r.t. to the basis
(f1(τ), . . . , fm(τ)) (see Sec. 2 for the notation). Also, let Ω(τ) be an m×m
matrix with (i, j) entry equal to αi,j(τ), where αi,j(τ) is defined by (7.19)
with ∆ = Λ0(τ). Then it is easy to see that the structural equation for the
canonical moving frame has the following form:(

Ė(τ)

Ḟ (τ)

)
=

(
Ω(τ) Ṡτ
Ṡ0τ −ΩT (τ)

)(
E(τ)
F (τ)

)
. (7.48)

We claim that in order to prove Theorem 2′, it is sufficient to prove the
following lemma.

Lemma 7.5. The matrix in the structural equation (7.48) depends only
on the coefficients of the expansions of t → wi(t, τ), 1 ≤ i ≤ m, in the
Laurent series at t = τ .

Indeed, if Lemma 7.5 holds, then first by Lemma 7.4 this matrix de-

pends only on the functions τ �→
∂2j−1ϕm

∂t2j−1
(t, τ)
∣∣
t=τ

, 1 ≤ j ≤ m, second,

the structural equation (7.48) has a unique solution with a prescribed ini-
tial condition, and, finally, any symplectic basis can be taken as an initial
condition of (7.48).
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Proof of Lemma 7.5. First, according to (7.3),

(Ṡτ ))i,j =

{
0, (i, j) �= (m,m),

m2, (i, j) = (m,m).
(7.49)

Further, by recursive formula (2.4) for i = 0:

Ṡ0τ =
d

dτ
A0(τ) = A1(τ) +

+
−1∑

n=1−2m

(
An(τ)ṠτA−n(τ) +A−n(τ)ṠτAn(τ)

)
, (7.50)

where Aj(τ) are defined by expansion (2.3) (here we have used the fact that
by definition of the derivative curve A0(τ) = 0 and by Lemma 6.1 the order
of the pole of t �→ (St−Sτ )

−1 at t = τ is equal to 2m−1). By the definition
of the vectors w(t, τ), we have

(
(St − Sτ )

−1
)
i,j
= −

t∫
wi(ξ, τ)wj(ξ, τ)dξ.

Therefore, anyAn(τ) with n �= 0 can be expressed in terms of the coefficients
of the expansions of t→ wi(t, τ), 1 ≤ i ≤ m, into the Laurent series at t = τ .
This together with (7.49) and (7.50) implies that Ṡ0τ can be expressed in
terms of the coefficients of the expansions of t → wi(t, τ), 1 ≤ i ≤ m, into
the Laurent series at t = τ .
Finally, let us analyze the matrix Ω(τ). By Lemma 7.3, all its entries

αi,j(τ) with 1 ≤ i ≤ m− 1 can be expressed in terms of the coefficients of
the expansions of t→ wm(t, τ) into the Laurent series at t = τ . The entries
αm,j(τ) do not enter the differential equation (7.23). To find an expression
for these entries, we will use the integral-differential equation (7.12) that
can be rewritten for ∆ = Λ0(τ) in the form

∂wΛ0(τ)(t, τ1)

∂τ1

∣∣∣
τ1=τ

= −m2wm(t, τ)

t∫
wm(ξ, τ)w(ξ, τ)dξ. (7.51)

Using (7.20), we can obtain from here the following system of equation w.r.t.
the components wj(t, τ):

∂wj(t, τ)

∂τ
+
m∑
l=1

wl(t, τ)αlj(τ) =

= −m2wm(t, τ)

t∫
wm(ξ, τ)wj(ξ, τ)dξ, 1 ≤ j ≤ m. (7.52)
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For a given j consider the Laurent expansion of the left-hand side of

(7.51), as a function of t, at t = τ . By (7.25), the coefficient of
1

t− τ
in

this expansion is equal to αm,j(τ). On the other hand, all coefficients of the
appropriate expansion of the right-hand side can be expressed in terms of
coefficients of expansions of t→ wj(t, τ) and t→ wm(t, τ) into the Laurent
series at t = τ . Therefore, the entries αm,j(τ) can also be expressed in terms
of coefficients of expansions of t→ wi(t, τ) (even with i = j or m) into the
Laurent series at t = τ . This concludes the proof of our lemma and also of
Theorem 2′.

8. Appendix

In this appendix we prove identity (7.47). We are sure that the proof
presented here is far from being optimal, but this is the only one that we
have at this moment.
Denote the determinant in the left-hand side of (7.47) by Lm(k). Ex-

panding this determinant w.r.t. the last column, we have

Lm(k) =
m∑
j=1

(−1)j+mθj(k)
j−1∏
i=1

ηi(k)
m∏

i=j+1

ζi(k) +
m∏
i=1

ηi(k). (8.1)

Then, substituting (7.46) into (8.1), one can easily transform Lm(k) to the
following form:

Lm(k) =
m+1∑
j=1

m(2m− j)

(m− j + 1)!(j − 1)

(
k − 2(m− j + 1)

)
×

×
m−j∏
i=2−j

(k − i)
2m∏

i=2m−j+2

(k − i). (8.2)

Note that Lm(k) is a polynomial of degree 2m, exactly as the polynomial in
the right-hand side of (7.47). Also, for both polynomials the coefficient of
leading term k2m is equal to 1. Therefore, in order to prove identity (7.47),
it is sufficient to prove that the polynomials in both sides of (7.47) have the
same roots, or, equivalently, that Lm(2i) = Lm(1−2i) = 0 for all 1 ≤ i ≤ m.
We will do this in two steps: first we will show that

Lm(2i) = 0, 1 ≤ i ≤ m. (8.3)

Second, we will prove that the function

Lm(k)
def
=

k

k − 2m
Lm(k) (8.4)
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satisfies

Lm(−1− k) = Lm(k), (8.5)

i.e., Lm(k) is invariant under the reflection of its argument w.r.t. −1/2.
This together with (8.3) and the fact that Lm(0) = 0 (which follows directly
from the definition of Lm(k)) will imply that also Lm(1 − 2i) = 0 for all
1 ≤ i ≤ m.

1. The proof of (8.3). For 1 ≤ j ≤ m+ 1, we denote

pm,j(k) =
m(2m− j)!

(m− j + 1)!(j − 1)!

(
k − 2(m− j + 1)

)
×

×
m−j∏
i=2−j

(k − i)
2m∏

i=2m−j+2

(k − i). (8.6)

By a direct computation, the following identity can be easily verified:

pm,j(2m− 2l) + pm,2l+2−j(2m− 2l) = 0, (8.7)

where

0 ≤ l ≤ m− 1, max
{
1, 2l+ 1−m

}
≤ j ≤ min

{
m+ 1, 2l+ 1

}
.

In particular, applying (8.6) to j = l + 1, we have

pm,l+1(2m− 2l) = 0. (8.8)

By construction,

Lm(2m− 2l) =
m+1∑
j=1

pm,j(2m− 2l). (8.9)

Denote l1 = max{1, 2l+ 1−m} and l2 = min{m+ 1, 2l+ 1}. Consider the
following 3 cases:
(1) l1 ≤ j ≤ l2. Then from (8.7) and (8.8) it follows that

l2∑
j=l1

pm,j(2m− 2l) =
l∑
j=l1

(
pm,j(2m− 2l) + pm,2l+2−j(2m− 2l)

)
+

+ pm,l+1(2m− 2l) = 0; (8.10)

(2) 2l+ 2 ≤ j ≤ m+ 1. Then 2m− j + 2 ≤ m− l ≤ 2m; therefore, from
(8.6) it follows that pm,j(2m− 2l) = 0;
(3) 1 ≤ j ≤ 2l −m. Then 2 ≤ 2m− 2l ≤ m− j and again from (8.6) it

follows that in this case pm,j(2m− 2l) = 0.
Therefore, by (8.9), Lm(2m−2l) = 0 for all 0 ≤ l ≤ m−1, or, equivalently,

Lm(2i) = 0 for all 1 ≤ i ≤ m.
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2. The proof of (8.5). We will transform the expression for Lm(k) into
a more symmetric form. Following [5] (Chap. 1, Sec. 2) we denote

xn|h
def
= x(x+ h) . . . (x+ (n− 1)h). (8.11)

Then similarly to the Newton binomial identity, one easily obtains

(x+ y)n|h =
n∑
i=0

(
n
i

)
xn−i|hyi|h. (8.12)

Using notation (8.11), one can rewrite Lm(k) in the form

Lm(k) =
m+1∑
j=1

m(2m− j)!

(m− j + 1)!(j − 1)!
(k − 2(m− j + 1))×

×(k −m+ j)m−1|1(k − 2m)j−1|1. (8.13)

Applying (8.12), one obtains

(k −m+ j)m−1|1 =
(
(k + 1) + (j −m− 1)

)m−1|1
=

=
m−1∑
i=0

(
m
i

)
(k + 1)m−1−i|1(j −m− 1)i|1 =

=

m−j+1∑
i=0

(−1)i
(

m
i

)
(k + 1)m−1−i|1

(m− j + 1)!

(m− j − i+ 1)!
. (8.14)

Substituting (8.14) into (8.13) and changing the order of summation, one
easily obtains

Lm(k) =
m∑
i=0

(m−i∑
j=0

(2m− j − 1)!

j!(m− j − i)!
(k − 2(m− j))(k − 2m)j|1

)
×

×
(−1)im!(k + 1)m−1−i|1

(m− i− 1)!i!
. (8.15)

Lemma 8.1. The following identity holds:

m−i∑
j=0

(2m− j − 1)!

j!(m− j − i)!
(k − 2m)j|1(k − 2(m− j)) =

=
(m+ i− 1)!

(m− i)!
(k − 2m)(k +m− i)

m−i−1∏
l=1

(k − l). (8.16)
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Proof. Using the representation k− 2(m− j) = (k− 2m)+2j, one can split
the left-hand side of (8.16) into the sum of two terms:

(k − 2m)
m−i∑
j=0

(2m− j − 1)!

j!(m− j − i)!
(k − 2m)j|1 +

+ 2
m−i∑
j=1

(2m− j − 1)!

(j − 1)!(m− j − i)!
(k − 2m)j|1. (8.17)

Since
(2m− j − 1) = (m+ i− 1)!(m+ i)m−i−j|1,

the first term of (8.17) can be written in such a way that one can apply the
binomial identity (8.12):

(m+ i− 1)!(k − 2m)

(m− i)!

m−i∑
j=0

(
m− i
j

)
(m+ i)m−i−j|1(k − 2m)j|1 =

=
(m+ i− 1)!(k − 2m)

(m− i)!
(k −m+ i)m−i|1. (8.18)

In the same way, the second term of (8.17) can also be written in such a
way that one can apply the binomial identity (8.12):

2
m−i∑
j=1

(2m− j − 1)!

(j − 1)!(m− j − i)!
(k − 2m)j|1 =

= 2
m−i−1∑
j=0

(2m− j − 2)!

(j)!(m − j − i− 1)!
(k − 2m)j+1|1 =

= 2(k − 2m)
m−i−1∑
j=0

(2m− j − 2)!

(j)!(m− j − i− 1)!
(k − 2m+ 1)j|1 =

=
2(m+ i− 1)!(k − 2m)

(m− i− 1)!
×

×
m−i−1∑
j=1

(
m− i− 1

j

)
(m+ i)m−i−1−j|1(k − 2m+ 1)j|1 =

=
2(m+ i− 1)!(k − 2m)

(m− i− 1)!
(k −m+ i+ 1)m−i−1|1. (8.19)

Combining (8.18) and (8.19), we obtain that the left-hand side of (8.16)
is equal to

(m+ i− 1)!(k − 2m)

(m− i− 1)!

(k −m+ i

m− i
+ 2
)
(k −m+ i+ 1)m−i−1|1 =
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=
(m+ i− 1)!

(m− i)!
(k − 2m)(k +m− i)(k −m+ i+ 1)m−i−1|1 =

=
(m+ i− 1)!

(m− i)!
(k − 2m)(k +m− i)

m−i−1∏
l=1

(k − l), (8.20)

which is exactly the right-hand side of (8.16). This completes the proof of
the lemma.

Now substituting (8.16) into (8.15), we have the following identity:

Lm(k) = (k − 2m)
m∑
i=0

(−1)im!(m+ i− 1)!

i!(m− i)!(m− i− 1)!
×

×
m−i−1∏
l=1

(k − l)
m−i∏
l=1

(k + l). (8.21)

Then the function Lm(k) satisfies

Lm(k) =
k

k − 2m
Lm(k) =

=
m∑
i=0

(−1)im!(m+ i− 1)!

i!(m− i)!(m− i− 1)!

m−i∏
l=1

(k + 1− l)
m−i∏
l=1

(k + l). (8.22)

It remains only to note that all terms of the sum in the right-hand side

of (8.22) are invariant under the reflection of the argument w.r.t. −
1

2
or,

equivalently, under the substitution k → −1− k. Then the function Lm(k)
is also invariant under this substitution, which proves (8.5) and, therefore,
also (7.47).
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