Homework Assignment 3 in Topology I, MATH636
due to Sept 21, 2009
(all problems except problem 7 will be graded, but you are encouraged to solve problem 7 as well)

1. Solve problem 4, p. 10 in the text.

2. Prove the following form of the intermediate value theorem. Let X be a connected space and let $f : X \to \mathbb{R}$ be a map into \mathbb{R} with the Euclidean topology. Show that if $a = f(x_0)$ and $b = f(x_1)$ with $a < b$, for some $x_0, x_1 \in X$, then the interval (a, b) is contained in the image of X.

3. a. Show that if A is dense in the topological space X and A is connected, then X is connected.

b. Let X be a connected topological space and A be a closed set in X. Show that if the boundary ∂A of A is connected, then A is connected. Is it necessary true, if X is not connected?

4. a. Describe the components of \mathbb{R}_ℓ (the lower limit topology).

b. Let $I = [0, 1]$. Describe the components and arc components of I_{lex}^2 (the lexicographic topology)

5. A topological space X is a door space if every subset is either open or closed. Show that a Hausdorff door space has at most one accumulation point, and if x is a point which is not an accumulation point, then $\{x\}$ is open. Give an example of a non-discrete door space.
