Homework Assignment 6 in Topology I, MATH636

due to Oct 19, 2009

1. Exercises on metrizability:
 a. Let X be a compact Hausdorff space. Show that X is metrizable if and only if X is second countable;
 b. Solve problem 5, p.29 in the text;
 c. Give an example showing that Hausdorff second countable space need not be metrizable.

2. Solve problem 1, p. 31 in the text;

3. Exercises on completely regular spaces:
 a. Solve problem 2, p. 28 in the text;
 b. Fix a subbasis \mathcal{S} of a T_1 topological space X. Prove that X is completely regular if and only if for each point $x \in X$ and its neighborhood $V \in \mathcal{S}$, there exists a map $f : X \to [0, 1]$ such that $f(x) = 0$ and $f(y) = 1$ for $y \in X \setminus V$;
 c. Show that the arbitrary product of completely regular spaces is completely regular.

4. Exercises on the Tietze Extension Theorem:
 a. Show that the Tietze extension theorem implies the Urysohn lemma (i.e. if the statement of the Tietze extension theorem is true, then the Urysohn lemma is true; ignore here that the Tietze extension theorem is proved using the Urysohn lemma);
 b. Solve problem 2, p. 31 in the text;
 c. Look on the proof of the Tietze extension theorem given in the class (which coincides in essence with the proof in the text): Let F be a closed set of a normal space X. Let $\alpha = \frac{1}{3}$. Given a continuous map $h : F \to [0, r]$, where $r > 0$ let $\tilde{h} : X \to [0, \alpha r]$ be a continuous map such that
 \[
 \tilde{h}(x) = \begin{cases}
 0 & \text{if } x \in F \text{ and } h(x) \leq \alpha r, \\
 \alpha r & \text{if } x \in F, \text{ and } h(x) \geq (1 - \alpha)r.
 \end{cases}
 \]
 Then for a continuous function $f : F \to [0, 1]$ define recursively $g_1 = \tilde{f}$, $g_2 = (\tilde{f} - g_1)$, \ldots, $g_n = \left(\tilde{f} - \sum_{i=1}^{n-1} g_i\right)$, \ldots. The required extension of f to X can be taken as $\sum_{n=1}^{\infty} g_n$. For what values of $0 < \alpha < \frac{1}{2}$ other than $\alpha = \frac{1}{3}$ (if any) does the proof of the Tietze theorem go through? Explain.