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In the famous 1910 “cinq variables” paper Cartan showed in particular that for maximally nonholonomic rank
2 distributions in R5 with non-zero covariant binary biquadratic form the dimension of the pseudo-group of
local symmetries does not exceed 7 and among such distributions he described the one-parametric family
of distributions for which this pseudo-group is exactly 7-dimensional. Using the novel interpretation of the
Cartan covariant binary biquadratic form via the classical Wilczynski invariant of curves in projective spaces
associated with abnormal extremals of the distributions [4, 27, 28] one can generalize this Cartan result to rank
2 distributions in Rn satisfying certain genericity assumption, called maximality of class, for arbitrary n≥ 5.

In the present paper for any rank 2 distribution of maximal class with at least one nonvanishing generalized
Wilczynski invariants we construct the canonical frame on a (2n−3)-dimensional bundle and describe explic-
itly the moduli spaces of the most symmetric models. The relation of our results to the divergence equivalence
of Lagrangians of higher order is given as well.
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1. Introduction

A rank 2 distribution on an n-dimensional manifold M or shortly (2,n)-distribution is a rank 2 sub-
bundle of the tangent bundle T M or a field of planes on M. We are interested in the local equivalence
problem for these geometric structures under the natural action of the group of germs of diffeomor-
phisms of M. Starting from the dimension n = 5 this equivalence problem is non-trivial for generic
objects, i.e. generic rank 2 distributions have functional differential invariants.

The case n = 5 was treated by Èlie Cartan in his famous paper [8]. First, starting from any
maximally nonholonomic (2,5)-distribution he constructed a canonical coframe on a bundle of
dimension 14 over M. In particular, this implies that the dimension of the pseudo-group of local
symmetries of such distributions does not exceed 14. Second, Cartan constructed the fundamental
invariant of the distribution, which is a special homogeneous polynomial of degree 4 on each fiber
of the distribution. We refer to it as Cartan tensor. In particular, he has shown that there exists
exactly one distribution, up to a local equivalence, such that its Cartan tensor vanishes identically.
This distribution is locally equivalent to the distribution, associated with the underdetermined ODE
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z′(x) =
(
y′′(x)

)2. Moreover, this distribution is the unique distribution, up to a local equivalence,
having 14 dimensional pseudo-group of local symmetries. Besides, from Cartan’s analysis it follows
that if the Cartan tensor does not vanish then the pseudo-group of local symmetries of a maximally
nonholonomic (2,5)-distribution does not exceed 7. The family of all distributions for which this
pseudo-group is 7-dimensional can be explicitly described and depends on one constant.

In [28] the second author found an alternative interpretation of the Cartan tensor exploiting the
notion of abnormal extremals of distributions (see section 2). Namely, to any abnormal extremal γ

of a rank 2 distribution in Rn with n≥ 5 one can assign a curve of Lagrangian subspaces in a linear
symplectic space (of dimension 2(n−3)), i.e. a curve in a Lagrangian Grassmannian. This curve is
obtained via the linearization of the flow of abnormal extremals along the extremal γ and is called
a Jacobi curve by analogy with Jacobi fields in the classical Calculus of Variations. For n ≥ 5 the
differential geometry of curves in Lagrangian Grassmannians (under the natural action of the linear
symplectic group) is non-trivial.

The invariants of curves in Lagrangian Grassmannains can be obtained in several ways. One
way is to use the notion of the cross-ratio of four points on the curve, generalizing the classical
notion of the cross-ration of four points of the projective lines. In [3, 27] the asymptotic of the
cross-ratio of four points on the curve in Lagrangian Grassmannian near the diagonal was studied.
It turns out that for n = 5 the first non-trivial differential invariant of Jacobi curves (from the afore-
mentioned asymptotic) coincides, after an appropriate interpretation, with the Cartan tensor ( [28])
and therefore for n > 5 it gives a natural generalization of this tensor ( [27]).

Moreover, in the case of (2,n)- distributions, the geometry of Jacobi curves can be reduced to
the geometry of the so-called self-dual curves in projective spaces (of dimension 2n−7) by a series
of osculations together with the operation of taking skew symmetric complements [4, 27]. The
differential geometry of curves in projective spaces goes back to E.J. Wilczynski, who constructed
in 1906 the fundamental set of (relative) invariants [25]: if k is the dimension of the projective space
then for a non-degenerate curve in the projective space the set of fundamental invariants consists
of k−1 relative invariants Wi of degree i+2, i = 1, . . . ,k−1, called the Wilczynski invariants. He
has also shown that the curve is self-dual if and only if all invariants of odd degree vanish. Since
k = 2n− 7 for a (2,n)-distribution, we get (n− 4) nontrivial invariants of this distribution coming
from the Wilczynski invariants of even degree of the corresponding self-dual curves in projective
spaces. These invariants of the distribution are called the generalized Wilczynski invariants of rank
2 distributions (see section 5 for details). For n = 5 the Cartan tensor coincides with the generalized
Wilczynski invariant of degree 4 (which is the unique generalized Wilczynski invariant in this case).

Further, this approach was used in [10,11] for constructing the canonical frames for rank 2 distri-
butions on manifolds of dimension n > 5 under very mild genericity assumptions called maximality
of class. This construction needs nothing more than some simple facts from the classical theory
of curves in projective spaces such as the existence of the canonical projective structure on such
curves, i.e. a special set of parametrizations defined up to a Möbius transformation (see section 5
below). The canonical frame for such distributions is constructed in a unified way on a bundle of
total dimension 2n−1. Remarkably, this construction is independent of the nilpotent approximation
(the Tanaka symbol [24, 30]) of a distribution at a point and even independent of its small growth
vector.

The dimension of the bundle with the canonical frame cannot be reduced in general, because
there exists a unique, up to a local equivalence, rank 2 distribution of maximal class in Rn, n > 5
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with the pseudo-group of local symmetries of dimension equal to 2n−1 ( [10,11]) . This distribution
is locally equivalent to the distribution, associated with the underdetermined (Monge) ODE z′(x) =(
y(n−3)(x)

)2 (see also [7], where the same is proved for more restrictive class of rank 2 distributions
associated with Monge equations). Besides, for this most symmetric rank 2 distribution of maximal
class all generalized Wilczynski invariants vanish identically.

However, if we assume that at least one generalized Wilczynski invariant does not vanish, then
one would expect that the canonical frame can be constructed on a bundle of smaller dimension.
In the present paper we show that in this situation the canonical frame can be constructed in a
unified way on a bundle of dimension 2n− 3 for all n ≥ 5 (Theorem 7.1, section 7), i.e. a gap
phenomenon occurs (namely, the dimension of the pseudo-group of symmetries drops more than
by 1 compared to the most symmetric model without the restriction on the generalized Wilczynski
invariants) similar to one observed in [18, 19]. We also describe all models with the pseudo-group
of local symmetries of dimension 2n−3, i.e. the most symmetric ones, among the considered class
of objects (Theorem 1.1 below and its reformulation in Theorem 9.1, section 9).

The key point is that in the considered case the canonical parametrization, up to a shift, can
be distinguished on abnormal extremals instead of the canonical projective structure. Note that the
same technique both for the construction of canonical frames and for the analysis of the most sym-
metric models was used in our recent paper [16] for rank 2 distributions of maximal class without
restrictions on the generalized Wilczynski invariants but with distinguished affine subdistributions
or more general control system with one input on them. In this case the additional structures on the
distribution impose the distinguished parametrization, up to a shift, on abnormal extremals as well.
However, the class of equivalence problems considered in the present paper is more complicated
than in [16]. For example, the description of the moduli spaces of the most symmetric models is
more involved and based on some new features of the geometry of linear differential equations.

Let us describe the most symmetric rank 2 distributions with at least one non-vanishing Wilczyn-
ski invariant in more detail. Given a tuple of n−3 real constants (r1, . . . ,rn−3), let D(r1,...,rn−3) be the
distribution associated with the following underdetermined ordinary differential equation (Monge
equation):

z ′(x) =
(
y(n−3)(x)

)2
+ r1

(
y(n−4)(x)

)2
+ . . .rn−3y2(x). (1.1)

More explicitly, it can be defined as the distribution in Rn, with coordinates (x,y0, . . . ,yn−3,z),
spanned by the following vector fields:

X1 =
∂

∂x
+ y1

∂

∂y0
+ · · ·+ yn−3

∂

∂yn−4
+

(
y2

n−3 + r1y2
n−4 + r2y2

n−5 + . . .rn−3y2
0
) ∂

∂ z
, (1.2)

X2 =
∂

∂yn−3
. (1.3)

Let Dn = {Dr1,...,rn−3 : (r1, . . . ,rn−3) ∈ Rn−3} be the family of all such distributions. There is
a special 1-foliation F (i.e. a foliation by curves) in Dn with a singularity at the origin (under the
identification of Dn with Rn−3) such that the rank 2 distributions from the same leaf of F are locally
equivalent and the rank 2 distributions from different leaves of F are not equivalent. Among all
leaves of F there is an exceptional leaf F (0) passing through the origin. The rank 2 distributions
from this leaf are locally equivalent to the most symmetric rank 2 distribution in Rn of maximal
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class. It turns out that the space of the most symmetric rank 2 distributions of maximal class in Rn

with nonzero Wilczynski invariants can be identified with the quotient space of Dn\F (0) by the
foliation F .

In more details, first, as shown in [10,11], any most symmetric rank 2 distribution in Rn of max-
imal class with n≥ 5 is locally equivalent to D(0,...,0). Next, among all distributions D(r1,...,rn−3) there
is a one-parametric family of distributions locally equivalent to D(0,...,0). To describe this family we
need the following definition

Definition 1.1. The tuple of m numbers (r1, . . . ,rm) is called exceptional if the roots of the polyno-
mial

λ
2m +

m

∑
i=1

(−1)iriλ
2(m−i) (1.4)

constitute an arithmetic progression (with the zero sum in this case). Equivalently, (r1, . . . ,rm) is

exceptional if ri = αm,i

(
r1

αm,1

)i
, 1≤ i≤m, where the constants αm,i, 1≤ i≤m, satisfy the following

identity

x2m +
m

∑
i=1

(−1)i
αm,ix2(m−i) =

m

∏
i=1

(
x2− (2i−1)2). (1.5)

We prove (Corollary 8.1, section 8) that the distribution D(r1,...,rn−3) is locally equivalent to the
distribution D(0,...,0) (or, equivalently, has the algebra of infinitesimal symmetries of the maximal
possible dimension among all rank 2 distributions of maximal class in Rn) if and only if the tuple
(r1, . . . ,rn−3) is exceptional in the sense of Definition 1.1. As far as we know, this simple but nice
observation was not mentioned in the existing literature. This observation is based on the following
simple fact from the representation theory of the Lie algebra sl2: the spectrum of any element in the
image of an irreducible representation of sl2 forms an arithmetic progression (see Proposition 8.1,
section 8). We have the following

Theorem 1.1. If a rank 2 distribution in Rn of maximal class, n≥ 5, with at least one non-vanishing
generalized Wilczynski invariant has a group of local symmetries of dimension 2n− 3, then it is
locally equivalent to the distribution D(r1,...,rn−3), where the tuple (r1, . . . ,rn−3) is not exceptional.
Two distributions D(r1,...,rn−3) and D(r̃1,...,r̃n−3) are locally equivalent if and only if

there exists c 6= 0 such that r̃i = c2iri, 1≤ i≤ n−3. (1.6)

The aforementioned foliation F on the space Dn can be described as follows: the exceptional
leaf F (0) consists of the exceptional tuples in the sense of Definition 1.1; other leaves are exactly
the equivalence classes on Dn\F (0) with respect to the equivalence relation given by (1.6). Note
that the exceptional leaf F (0) is also the union of three equivalence classes with respect to the same
equivalence relation, one of which is the origin.

The family of distributions Dn is also related with the Lagrangians∫ ((
y(n−3)(x)

)2
+ r1

(
y(n−4)(x)

)2
+ . . .rn−3y2(x)

)
dx, (1.7)

which are quadratic with respect to the derivatives and have constant coefficients. It is well known
(see [23], discussion in the beginning of p. 242 there) that these Lagrangians are the most symmetric
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ones among all Lagrangians

∫
F
(
x,y(x), . . . ,y(n−3)(x)

)
dx

with Fy(n−3)y(n−3) 6= 0, up to a contact transformations and modulo divergence. Our results here
together with the relation of this equivalence problem and its modification to the equivalence of
very special rank 2 distributions of maximal class studied in [12] give an alternative proof of this
fact. Note that for these most symmetric Lagrangians the Euler-Lagrange equation is a linear equa-
tion with constant coefficients (such that its characteristic polynomial coincides with the polynomial
in (1.4) where m = n−3).

Note that for rank 2 distributions in R5 the notion of maximality of class coincides with the
condition that the small growth vector is equal to (2,3,5). As was shown by Èlie Cartan in his
famous paper [8] the most symmetric distribution among all distributions with small growth vector
(2,3,5) has 14 dimensional algebra of infinitesimal symmetries and this distribution is the unique
distribution with identically zero Cartan invariant (which coincides with the (unique in this case)
generalized Wilczynski invariant). Therefore in this case our approach gives the unified construction
of the canonical frame on a 7-dimensional bundle for all distributions with the small growth vector
(2,3,5) except the most symmetric one, which provides also an alternative way to get the Cartan
classification of submaximal symmetric models for these distributions [8, chapter IX]. Note also
that in the case n = 5 the construction of the canonical frame was already done in the PhD thesis
of the second author [31, subsection 10.5]. It is worth to mention that for n = 5 an alternative
way to describe these submaximal models is via the family of underdetermined ODEs (Monge
equations) z′(x) = (y′′(x))α with α /∈ {−1, 1

3 ,
2
3 ,2} and one additional equation z′(x) = lny′′(x) (see,

for example, [22, Example 6], [18, section 5]).
In the case n > 5 the question whether the most symmetric distribution of maximal class is

the only distribution within this class with all vanishing generalized Wilczynski invariants remains
open. It is known however that this is true in the class of distributions associated with Monge
equations:

z′ = F(x,y(x), . . . ,y(n−3)(x)) (1.8)

with the right hand side independent of z(x) and non-linear in y(n−3) ( [12]). In other words, it
was shown there that the vanishing of all generalized Wilczynski invariants for the distribution
associated with the Monge equation (1.8) implies that this distribution is equivalent to the most
symmetric one.

The paper is organized as follows. The main results are given in sections 7 and 9 (Theorem
7.1 and Theorem 9.1, which is the reformulation of Theorems 1.1 above). Note that the proofs of
Theorem 7.1 and Theorem 9.1 are essentially the repetitions of the proofs of Theorem 3 and Theo-
rem 4 from [16], respectively, modified appropriately to the equivalence problem considered in the
present paper. They are given for the sake of completeness and self-containment of the exposition.
Sections 2-6 are preparatory for section 7, section 8 is preparatory for section 9. In sections 2-5 we
list all necessary facts about abnormal extremals of rank 2 distributions, their Jacobi curves and the
invariants of unparametrized curves in projective spaces. The details can be found in [10,26,27]. In
section 6 we summarize the main results of [10, 11] about canonical frames for rank 2 distributions
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of maximal class in order to compare them with the analogous results of sections 7 and 9. In sec-
tion 8 we list all necessary facts about the invariants of parametrized self-dual curves in projective
spaces.

2. Abnormal extremals of rank 2 distributions

Let D be a rank 2 distribution on a manifold M. A smooth section of a vector bundle D is called
a horizontal vector field of D. Taking iterative brackets of horizontal vector fields of D, we obtain
the natural filtration {dimD j(q)} j∈N on each tangent space TqM. Here D j is the j-th power of the
distribution D, i.e., D j = D j−1 +[D,D j−1], D1 = D, or , equivalently, D j(q) is a linear span of all
Lie brackets of the length not greater than j of horizontal vector fields of D evaluated at q.

Assume that dimD2(q) = 3 and dimD3(q) > 3 for any q ∈ M. Denote by (D j)⊥ ⊂ T ∗M the
annihilator of the jth power D j, namely

(D j)⊥ = {(p,q) ∈ T ∗M : p · v = 0 ∀v ∈ D j(q)}.

Recall that abnormal extremals of D are by definition the Pontryagin extremals with the vanish-
ing Lagrange multiplier near the functional for any extremal problem with constrains, given by the
distribution D. They depend only on the distribution D and not on a functional.

It is easy to show (see, for example, [11,26]) that for rank 2 distributions all abnormal extremals
lie in (D2)⊥ and that through any point of the codimension 3 submanifold (D2)⊥\(D3)⊥ of T ∗M
passes exactly one abnormal extremal or, in other words, (D2)⊥\(D3)⊥ is foliated by the character-
istic 1-foliation of abnormal extremals. To describe this foliation let π : T ∗M 7→M be the canonical
projection. For any λ ∈ T ∗M, λ = (p,q), q ∈ M, p ∈ T ∗q M, let s(λ )(·) = p(π∗·) be the canonical
Liouville form and σ = ds be the standard symplectic structure on T ∗M. Since the submanifold
(D2)⊥ has odd codimension in T ∗M, the kernels of the restriction σ |(D2)⊥ of σ on (D2)⊥ are not
trivial. At the the points of (D2)⊥\(D3)⊥ these kernels are one-dimensional. They form the char-
acteristic line distribution in (D2)⊥\(D3)⊥, which will be denoted by C . The line distribution C
defines the desired characteristic 1-foliation on (D2)⊥\(D3)⊥ and the leaf of this foliation through
a point is exactly the abnormal extremal passing through this point. From now on we shall work
with abnormal extremals which are integral curves of the characteristic distribution C .

The characteristic line distribution C can be easily described in terms of a local basis of the
distribution D, i.e. 2 horizontal vector fields X1 and X2 such that D(q) = span{X1(q),X2(q)} for all
q from some open set of M. Denote by

X3 = [X1,X2], X4 =
[
X1, [X1,X2]

]
, X5 =

[
X2, [X1,X2]

]
. (2.1)

Let us introduce the “quasi-impulses” ui : T ∗M 7→ R, 1≤ i≤ 5,

ui(λ ) = p ·Xi(q), λ = (p,q), q ∈M, p ∈ T ∗q M. (2.2)

Then by the definition

(D2)⊥ = {λ ∈ T ∗M : u1(λ ) = u2(λ ) = u3(λ ) = 0}. (2.3)

As usual, for a given function h : T ∗M 7→ R denote by
−→
h the corresponding Hamiltonian vector

field defined by the relation i−→h σ =−d h. Then by the direct computations (see, for example, [11])
the characteristic line distribution C satisfies

C = span{u4
−→u 2−u5

−→u 1}. (2.4)
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3. Jacobi curves of abnormal extremals

Now we are ready to define the Jacobi curve of an abnormal extremal of D. For this first lift the
distribution D to (D2)⊥, namely considered the distribution J on (D2)⊥ such that

J (λ ) = {v ∈ Tλ (D
2)⊥ : dπ(v) ∈ D(π

(
λ )
)
}. (3.1)

Note that dimJ = n−1 and C ⊂J by (2.4) . The distribution J is called the lift of the distri-
bution D to (D2)⊥\(D3)⊥.

Given a segment γ of an abnormal extremal (i.e. of a leaf of the 1-characteristic foliation)
of D, take a sufficiently small neighborhood Oγ of γ in (D2)⊥ such that the quotient N =

Oγ/(the characteristic one-foliation) is a well defined smooth manifold. The quotient manifold N
is a symplectic manifold endowed with the symplectic structure σ̄ induced by σ |(D2)⊥ . Let

φ : Oγ → N (3.2)

be the canonical projection on the factor. Define the following curves of subspaces in TγN:

λ 7→ φ∗
(
J (λ )

)
, ∀λ ∈ γ. (3.3)

Informally speaking, these curves describe the dynamics of the distribution J w.r.t. the character-
istic 1-foliation along the abnormal extremal γ . Note that if we choose another neighborhood Õγ

of γ with the same properties, then the corresponding quotient map coincides with the map φ on
Oγ ∩ Õγ . This implies that the curve defined by (3.3) is independent of the choice of the neighbor-
hood Oγ , because the only data about the quotient map φ that appears there is the differentials of φ

at points of γ .
Note that there exists a straight line, which is common to all subspaces appearing in (3.3) for any

λ ∈ γ . So, it is more convenient to get rid of it by a factorization. Indeed, let e be the Euler field on
T ∗M, i.e., the infinitesimal generator of homotheties on the fibers of T ∗M. Since a transformation
of T ∗M, which is a homothety on each fiber with the same homothety coefficient, sends abnormal
extremals to abnormal extremals, we see that the vector ē = φ∗e(λ ) is the same for any λ ∈ γ and
lies in any subspace appearing in (3.3). Let

Jγ(λ ) = φ∗
(
J (λ )

)
/{Rē}, ∀λ ∈ γ (3.4)

The (unparametrized) curve λ 7→ Jγ(λ ), λ ∈ γ is called the Jacobi curve of the abnormal
extremal γ . It is clear that all subspaces appearing in (3.4) belong to the space

Wγ = {v ∈ TγN : σ̄(v, ē) = 0}/{Rē}. (3.5)

and that

dimJγ(λ ) = n−3. (3.6)

The space Wγ is endowed with the natural symplectic structure σ̃γ induced by σ̄ . Also dimWγ =

2(n−3).
Given a subspace L of Wγ denote by L∠ the skew-orthogonal complement of L with respect to

the symplectic form σ̃γ , L∠ = {v ∈Wγ ,σγ(v, `) = 0 ∀` ∈ L}. Recall that the subspace L is called
isotropic if L⊆ L∠, coisotropic if L∠ ⊆ L, and Lagrangian, if L = L∠. Directly from the definition,
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the dimension of an isotropic subspace does not exceed 1
2 dimWγ , and a Lagrangian subspace is an

isotropic subspace of the maximal possible dimension 1
2 dimWγ . The set of all Lagrangian subspaces

of Wγ is called the Lagrangian Grassmannian of Wγ .
It is easy to see ( [11,27]) that the Jacobi curve of an abnormal extremal consists of Lagrangian

subspaces, i.e. it is a curve in the Lagrangian Grassmannian of Wγ . In the case n≥ 5 (equivalently,
dim Wγ ≥ 4) curves in the Lagrangian Grassmannian of Wγ have a nontrivial geometry with respect
to the action of the linear symplectic group and any symplectic invariant of Jacobi curves of abnor-
mal extremals produces an invariant of the original distribution D.

4. Reduction to geometry of curves in projective spaces

In the earlier works [3, 27] invariants of Jacobi curves were constructed using the notion of the
cross-ratio of four points in Lagrangian Grassmannians analogous to the classical cross-ratio of
four point in a projective line. Later, we developed a different method, leading to the construction
of canonical bundles of moving frames and invariants for quite general curves in Grassmannians
and flag varieties [14, 15]. The geometry of Jacobi curves Jγ in the case of rank 2 distributions can
be reduced to the geometry of the so-called self-dual curves in the projective space PWγ .

For this first one can produce a curve of flags of isotropic/coisotropic subspaces of Wγ by a series
of osculations together with the operation of taking skew symmetric complements. For this, denote
by C(Jγ) the tautological bundle over Jγ : the fiber of C(Jγ) over the point Jγ(λ ) is the linear space
Jγ(λ ). Let Γ(Jγ) be the space of all smooth sections of C(Jγ). If ψ : (−ε,ε) 7→ γ is a parametrization
of γ such that ψ(0) = λ , then for any i≥ 0 define

J(i)γ (λ ) := span{ d j

dτ j `
(
ψ(t))

∣∣
t=0 : ` ∈ Γ(Jγ),0≤ j ≤ i} (4.1)

J(−i)
γ (λ ) =

(
J(i)γ (λ )

)∠ (4.2)

For i > 0 we say that the space J(i)γ (λ ) is the i-th osculating space of the curve Jγ at λ .

Note that Jγ = J(0)γ . Directly from the definitions the subspaces J(i)γ (λ ) are coisotropic for i > 0

and isotropic for i < 0 and the tuple {J(i)γ (λ )}i∈Z defines a filtration of Wγ . In other words, the curve

λ 7→ {J(i)γ (λ )}i∈Z is a curve of flags of Wγ . Besides, it can be shown [27] that

dim J(1)(λ )−dim J(0)(λ ) = dim J(0)(λ )−dim J(−1)(λ ) = 1,

which in turn implies that dim J(i)(λ )−dim J(i−1)(λ )≤ 1, i.e. the jump of dimensions between the
consecutive subspaces of the filtration {J(i)γ (λ )}i∈Z is at most 1. This together with (3.6) implies

that dim J(i)γ (λ )≤ n−3+ i for i > 0.

We say that λ is a regular point of (D2)⊥\(D3)⊥ if dim J(i)γ (λ ) = n−3+ i for 0 < i≤ n−3 or,

equivalently, if J(n−3)
γ (λ ) =Wγ . A rank 2 distribution D is called of maximal class at a point q ∈M

if at least one point in π−1(q)∩ (D2)⊥ is regular. Since by (2.4) the characteristic distribution C
generated by a vector field depending algebraically on the fibers (D2)⊥, if D is of maximal class
at a point q ∈ M, then the set of all regular points of π−1(q)∩ (D2)⊥ is non-empty open set in
Zariski topology. The same argument is used to show that the set of germs of rank 2 distributions of
maximal class is generic.

If D is of maximal class at q and n≥ 5, then by necessity dimD3(q) = 5. The following question
is still open: Does there exist a rank 2 distribution with dimD3 = 5 such that it is not of maximal
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class on some open set of M? We proved that the answer is negative for n ≤ 8 and we have strong
evidences that the answer is negative in general.

From now on we will work with rank 2 distributions of maximal class. In this case
dimJ(4−n)

γ (λ ) = 1, i.e. the curve J(4−n)
γ is a curve in the projective space PWγ . Moreover, the

curve of flags λ 7→ {J(i)γ (λ )}n−3
i=3−n, λ ∈ γ is the curve of complete flags and the space J(i)γ (λ ) is

the (i+n−4)th-osculating space of the curve J(4−n)
γ . In other words, the whole curve of complete

flags λ 7→ {J(i)γ (λ )}n−3
i=3−n, λ ∈ γ can be recovered from the curve J(4−n)

γ and the differential geom-
etry of Jacobi curves of abnormal extremals of rank 2 distributions is reduced to the differential
geometry of curves in projective spaces.

5. Canonical projective structure and Wilczynski invariants

The differential geometry of curves in projective spaces is the classical subject, essentially com-
pleted already in 1905 by E.J. Wilczynski ( [25]). In particular, it is well known that these curves
are endowed with the canonical projective structure, i.e., there is a distinguished set of parameteri-
zations (called projective) such that the transition function from one such parametrization to another
is a Möbius transformation. Let us demonstrate how to construct it for the curve λ 7→ J(4−n)

γ (λ ),
λ ∈ γ .

As before, let C(J(4−n)
γ ) be the tautological bundle C(J(4−n)

γ ) over J(4−n)
γ . Set m = n− 3. Here

we use a “naive approach”, based on reparametrization rules for certain coefficient in the expansion
of the derivative of order 2m of certain sections of C(J(4−n)

γ ) w.r.t. to the lower order derivatives of
this sections. For the more algebraic point of view, based on Tanaka-like theory of curves of flags
and sl2-representations see [9, 14].

Take some parametrization ψ : I 7→ γ of γ , where I is an interval in R. By above, for any section
` of C(J(4−n)

γ ) one has that

span
{ d j

dt j `
(
ψ(t)

)
| 0≤ j ≤ 2m−1

}
=Wγ . (5.1)

A curves in the projective space PWγ satisfying the last property is called regular (or convex). It is
well known that there exists a unique, up to the multiplication by a nonzero constant, section E of
C(J(4−n)

γ ), called a canonical section of C(J(4−n)
γ ) with respect to the parametrization ψ , such that

d2m

dt2m E
(
ψ(t)

)
=

2m−2

∑
i=0

Bi(t)
di

dt i E
(
ψ(t)

)
, (5.2)

i.e. the coefficient of the term d2m−1

dt2m−1 E
(
ψ(t)

)
in the linear decomposition of d2m

dt2m E
(
ψ(t)

)
w.r.t. the

basis
{ di

dt i E
(
ψ(t)

)
: 0≤ i≤ 2m−1

}
vanishes.

Further, let ψ1 be another parameter, Ẽ be a canonical section of C(J(4−n)
γ ) with respect to the

parametrization ψ1, and υ = ψ−1 ◦ψ1. Then directly from the definition it easy to see that

Ẽ
(
ψ1(τ)

)
= c(υ ′(τ))

1
2−mE(ψ(t)) (5.3)

for some non-zero constant c.
Now let B̃i(τ) be the coefficient in the linear decomposition of d2m

dτ2m Ẽ
(
ψ1(τ)

)
w.r.t. the basis{ di

dτ i Ẽ
(
ψ1(t)

)
: 0≤ i≤ 2m−1

}
as in (5.2). Then, using the relation (5.3) it is not hard to show that
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the coefficients B2m−2 and B̃2m−2 in the decomposition (5.2), corresponding to parameterizations ψ

and ψ1, are related as follows:

B̃2m−2(τ) = υ
′(τ)2B2m−2(υ(τ))−

m(4m2−1)
3

S(υ)(τ), (5.4)

where S(υ) is the Schwarzian derivative of υ , S(υ) = d
dτ

(
υ ′′

2υ ′

)
−
(

υ ′′

2υ ′

)2
.

From the last formula and the fact that Sυ ≡ 0 if and only if the function υ is Möbius it follows
that the set of all parameterizations ϕ of γ such that

B2m−2 ≡ 0 (5.5)

defines the canonical projective structure on γ . Such parameterizations are called the projective
parameterizations of the abnormal extremal γ . If ψ and ψ1 are two projective parametrizations,
then there exists a Möbius transformation υ such that ψ1 = ψ ◦υ .

Now let t be a projective parameter on J(4−n)
γ . E. Wilczynski showed that for any i, 1 ≤ i ≤

2m−2, the following degree i+2 differentials

Wi(t)
de f
=

(i+1)!
(2i+2)!

(
i

∑
j=1

(−1) j−1 (2i− j+3)!(2m− i+ j−3)!
(i+2− j)! j!

B( j−1)
2m−3−i+ j(t)

)
(dt)i+2 (5.6)

on J(4−n)
γ does not depend on the choice of the projective parameter. In other words, for any λ ∈ γ ,

Wi is the well defined homogeneous polynomial of degree i+ 2 on the tangent line to Jγ(λ ) or,
equivalently, on the tangent line to the abnormal extremal γ at λ The form Wi is called the (i+2)-
nd order Wilczynski invariant of the curve J(4−n)

γ .
In a given parametrization of γ one can compute the Wilczynski invariant Wi on the velocity

vectors (corresponding to this parametrization) at any points of the curve γ to obtain a function on
the curve. This function (which is sometimes also referred as the density of the Wilczynski invariant
in the given parameter or simply as the Wilczynski invariant itself) is a relative invariant, because in
another parameter it is multiplied by the derivative of the reparametrization (from the new parameter
to the old one) raised to (i+2)-nd power (equal to the degree of the Wilczynski invariant).

Remark 5.1. Among all regular curves in the projective space Pk of dimension k, the curves with all
Wilczynski invariants equal to zero belong to the rational normal curve, i.e. to the curve consisting
of the points of the form [tk : tk−1s . . . : tsk−1 : sk] in some homogeneous coordinates. �

Note that the curve J(4−n)
γ is not an arbitrary regular curve in the projective space PW . It satisfies

the following additional property:

(S1) The (n−4)th-osculating space of J(4−n)
γ at any point λ is Lagrangian.

As shown already by Wilczynski [25] such curves are self-dual in the following sense:
(S2) The curve (J(n−4)

γ )∗ in the projectivization PW ∗γ of the dual space W ∗γ , which is dual to

the curve of hyperplanes J(n−4)
γ obtained from the original curve J(4−n)

γ by the osculation of order

2(n−4), is equivalent to the original curve J(4−n)
γ , i.e. there is a linear transformation A : W 7→W ∗

sending J(n−4)
γ onto (J(n−4)

γ )∗.
Note that in contrast to property (S1) the formulation of property (S2) does not involve a sym-

plectic structure on Wγ . However, it can be shown [20, 25] that if the property (S2) holds then there



Rank 2 distributions with nonzero Wilczynski invariants

exists a unique, up to a multiplication by a nonzero constant, symplectic structure on Wγ such that
the property (S1) holds (here it is important that dim Wγ is even; similar statement for the case of
odd dimensional linear space involves nondegenerate symmetric forms instead of skew-symmetric
ones). Since in our case the symplectic structure on Wγ is a priori given, in the sequel we will con-
sider projective spaces of linear symplectic spaces only and by self-dual curves we will mean curves
satisfying property (S1).

It was shown by Wilczynski that a curve in a projective space is self-dual if an only if all
Wilczynski invariant of odd order vanish (for the modern Lie-algebraic interpretation of this fact
see [14]). The remaining n−4 Wilczynski invariants of even order, W2i, 1≤ i≤ n−4, constitute the
fundamental set of symplectic invariants of the unparametrized curve J(4−n)

γ . Note that the nonzero
Wilczynski invariants have order ≥ 4 in this case and W2 = B2m−4(t)(dt)4 in any projective param-
eter t.

Taking the Wilczynski invariants W2i for the Jacobi curves of all abnormal extremals living in the
set RD we obtain the invariants of the distribution D, called the generalized Wilczynski invariants
of D of order 2(i+ 1) and denoted also by W2i. By the constructions, the generalized Wilczynski
invariant W2i at a regular point λ of (D2)⊥\(D3)⊥, is a special homogeneous polynomial of degree
2(i+1) on the tangent line at λ to the abnormal extremal passing through λ . Another interpretation
of these invariants, as certain functions on fibers of (D2)⊥, defined by a multiplication on a constant
on a fiber, is given in [27].

Note that in the case n = 5 the only possibly nonzero generalized Wilczynski invariant is W2

and it has degree 4. As shown in [28], under an appropriate identification, this invariant coincides
with the classical Cartan invariant obtained in [8].

6. Canonical frames for rank 2 distributions of maximal class

Now let RD be the set if all regular points of (D2)⊥\(D3)⊥. Denote by Pλ the set of all projective
parameterizations ψ on the characteristic curve γ , passing through λ , such that ψ(0) = λ . Let

ΣD = {(λ ,ψ) : λ ∈RD,ψ ∈Pλ}.

Actually, ΣD is a principal bundle over RD with the structural group of all Möbius transformations,
preserving 0 and dim ΣD = 2n−1. The main results of [10,11] can be summarized in the following:

Theorem 6.1. For any rank 2 distribution in Rn with n > 5 of maximal class there exists the canon-
ical, up to the action of Z2, frame on the corresponding (2n−1)-dimensional manifold ΣD so that
two distributions from the considered class are equivalent if and only if their canonical frames are
equivalent.

The group of symmetries of such distributions is at most (2n− 1)-dimensional and this upper
bound is sharp. All distributions from the considered class with (2n− 1)-dimensional Lie algebra
of infinitesimal symmetries is locally equivalent to the distribution D((0,...0) generated by the vector
fields X1 and X2 from (1.2)-(1.3) with all ri equal to 0 or, equivalently, associated with the underde-
termined ODE z′(x) =

(
y(n−3)(x)

)2.
The symmetry algebra of this distribution is isomorphic to a semidirect sum of gl(2,R) and

(2n−5)-dimensional Heisenberg algebra n2n−5 such that gl(2,R) acts irreducibly on a complement
of the center of n2n−5 to n2n−5 itself .
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7. Canonical frames for rank 2 distributions of maximal class with distinguish
parametrization on abnormal extremals

Now assume that at least one generalized Wilczynski invariant of rank 2 distribution D of maximal
class does not vanish. Let i0 be the minimal integer such that W2i0 6= 0 on some (open) subset R̃ of
RD. Then on each segment γ of abnormal extremals lying in U we can choose the unique, up to a
shift and the change of the orientation, parametrization ψ : I 7→ γ such that

W2i0
(
ψ(t)

)(
ψ
′(t)
)
≡ ε, (7.1)

where ε = 1 if W2i0 > 0 and ε = −1 if W2i0 < 0. Here by W2i0(λ )(v), where λ ∈U and v is the
tangent vector at λ to the abnormal extremal γ passing to λ , we mean the generalized Wilczynski
invariant W2i0 at λ evaluated at v.

Moreover, we also can fix the orientation on the curve. For this note that since the curve J(4−n)
γ

is self-dual, given a parametrization ψ on γ , among all canonical sections of the tautological bundle
C(J(4−n)

γ ) (defined up to the multiplication by a nonzero constant) there exists the unique, up to a
sign, section E of such that (5.2) holds and∣∣∣∣σ̃γ

(
dn−3

dtn−3 E
(
ψ(t)

)
,

dn−4

dtn−4 E
(
ψ(t)

))∣∣∣∣≡ 1. (7.2)

This section E will be called the strongly canonical section of C(J(4−n)
γ ) with respect to the

parametrization ψ . The parametrization ψ is called the canonical parametrization of the abnor-
mal extremal γ if (7.1) holds and

σ̃γ

(
dn−3

dtn−3 E
(
ψ(t)

)
,

dn−4

dtn−4 E
(
ψ(t)

))
≡ 1. (7.3)

Note that the canonical parametrization is preserved by the homotheties of the fibers of (D2)⊥.
Namely, if δs is the flow of homotheties on the fibers of T ∗M: δs(p,q) = (es p,q), q ∈ M, p ∈
T ∗q M or, equivalently, the flow generated by the Euler field e generates this flow, then ψ : I 7→ γ

is the canonical parametrization on an abnormal extremal γ if and only if δs ◦ψ is the canonical
parametrization on the abnormal extremal δs ◦ γ .

The main goal of this section is to prove the following

Theorem 7.1. Given a rank 2 distribution D of maximal class with at least one nonvanishing gen-
eralized Wilczynski invariant one can assign to such structure a canonical, up to the action of Z2,
frame on the set R̃ defined above so that two objects from the considered class are equivalent if and
only if their canonical frames are equivalent.

Proof. Given λ ∈ (D2)⊥ denote by V (λ ) the tangent space to the fiber of the bundle π : (D2)⊥ 7→M
(the vertical subspace of Tλ (D2)⊥),

V (λ ) = {v ∈ Tλ (D
2)⊥,π∗v = 0}. (7.4)

It is easy to show ( [11, 27]) that

dφ
(
V (λ )⊕C (λ )

)
= J(−1)

γ (λ ) modRē, (7.5)

where φ is as in (3.2), ē = φ∗e with e being the Euler field, and γ is the abnormal extremal passing
through λ . Define also the following subspaces of Tλ (D2)⊥:
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J (i)(λ ) = {w ∈ Tλ (D
2)⊥ : dφ(w) ∈ J(i)γ (λ ) modRē}. (7.6)

Directly from the definition, if λ ∈RD, then

[C ,J (i)](λ ) = J (i+1)(λ ). (7.7)

Also, if V (i)(λ ) =V (λ )∩J (i)(λ ), then

J (i)(λ ) =V (i)(λ )⊕C (λ ) ∀i < 0. (7.8)

Moreover, it can be shown ( [11, Lemma 2]) that

[V (i),V (i)]⊆V (i), [V (i),J (−i)]⊆J (−i), ∀i≤ 0. (7.9)

Let E be the strongly canonical section of C(J(4−n)
γ ) with respect to the canonical parametriza-

tion ψ of the abnormal extremal γ (as defined by (7.2)). Then (7.5) implies that a vector field ε1

such that

(A1) dφ
(
ε1(λ )

)
≡ E mod ē,

(A2) ε1 is the section of the vertical distribution V

is defined modulo the Euler field e. Note that conditions (A1) and (A2) also imply that ε1 is the
section of V (4−n).

Now let h be the vector field consisting of the tangent vectors to the abnormal extremals param-
eterized by the canonical parameter. Note that h is a section of the characteristic line distribution
C .

Lemma 7.1. Among all vector fields ε1 satisfying conditions (A1) and (A2), there exists the unique,
up to a multiplication by −1, vector field such that

[
ε1, [h,ε1]

]
(λ ) ∈ span{e(λ ),h(λ ),ε1(λ )}. (7.10)

Proof. Let ε̃1 be a vector field satisfying the conditions (A1) and (A2). Then ε̃1 is the section of
V (4−n). From (7.7) it follows that [h, ε̃1] is a section of J (5−n). If n > 5 this together with the first
relation in (7.8) implies that

[
ε̃1, [h, ε̃1]

]
is a section of J (5−n). For n = 5 the same is true because

of the second relation in (7.8) applied for i = 0. Note that again by (7.7) we have

J (5−n) = span{e,h, ε̃1, [h, ε̃1]}.

Therefore,



Boris Doubrov and Igor Zelenko

[
ε̃1, [h, ε̃1]

]
≡ k[h, ε̃1] modspan{e,h, ε̃1} (7.11)

for some function k. Now let ε1 be another vector field satisfying conditions (A1) and (A2). Then
by above there exists a function µ such that

ε1 =±ε̃1 +µe. (7.12)

From the fact that the canonical parametrization is preserved by the homotheties of the fibers of
(D2)⊥ it follows that [e,h] = 0 . Also from the normalization condition (7.2) it is easy to get that

[e,ε1] =−
1
2
ε1 modspan(e). (7.13)

Then [
e, [h,ε1]

]
=−

1
2
[h,ε1] mod(e,h), (7.14)

From this and (7.12) it follows that

[
ε1, [h,ε1]

]
≡
(
k∓

µ

2
)
[h,ε1] span{e,h,ε1}, (7.15)

which implies the statement of the lemma: the required vector ε̃1 is obtained by taking µ = ±2k.
�

Now we are ready to construct the canonical frame on the set R̃. One option is to take as a
canonical frame the following one:{

e,h,ε1,{(adh)i
ε1}2n−7

i=1 , [ε1,(adh)2n−7
ε1]
}
, (7.16)

where ε1 is as in Lemma 7.1. Let us explain why it is indeed a frame. First the vector fields{
e,h,ε1,{(adh)iε1}2n−7

i=1

}
are linearly independent on R̃ due to the relation (7.7). Besides,

[ε1,(adh)2n−7
ε1](λ ) /∈J (n−3)(λ ).

Otherwise, ε1(λ ) belongs to the kernel of the form σ(λ )|(D2)⊥ and therefore it must be collinear to

h. We get a contradiction. Therefore the tuple of vectors in (7.16) constitute a frame on R̃.
The construction of the frame (7.16) is intrinsic. However, in order to guaranty that two objects

from the considered class are equivalent if and only if their canonical frames are equivalent, we have
to modify this frame such that it will contain the basis of the vertical distribution V (defined by 7.4).
For this, replace the vector fields of the form (adh)iε1 for 1≤ i≤ n−4 by their projections to V (i)

with respect to the splitting (7.8), i.e. their vertical components with respect to this splitting. This
completes the construction of the required canonical frame (defined up to the action of the required
finite groups). The proof of Theorem 7.1 is completed.

As a direct consequence of Theorem 7.1 we have

Corollary 7.1. For a rank 2 distribution D of maximal class with at least one nonvanishing gen-
eralized Wilczynski invariant the dimension of pseudo-group of local symmetries does not exceed
2n−3.



Rank 2 distributions with nonzero Wilczynski invariants

8. Symplectic curvatures for the structures under consideration

Before proving Theorems 1.1 about the most symmetric models for geometric structures under
consideration, we want to reformulate this theorem in more geometric terms. For this we distinguish
special invariants for this structures, called the symplectic curvatures. In contrast to the generalized
Wilczynski invariants they are functions on the open subset R̃ of RD, defined in the beginning of
the previous section.

First assume that J(n−4)
γ is parametrized by the parametrization ψ which is not necessary canon-

ical. The geometry of parameterized regular self-dual curves in projective spaces is simpler than
of unparametrized ones: instead of forms on the curve we obtain invariant, which are scalar-valued
function on the curve ( [29]). The main result of [29] (Theorem 2 there) can be reformulated as fol-
lows (see also [20]: if E is a (strongly) canonical section of C(J(4−n)

γ ) with respect to the (canonical)
parametrization ψ , then there exist m functions ρ1(t), . . . ,ρm(t) such that

E(2m)
(
ψ(t)

)
=

m

∑
i=1

(−1)i+1 dm−i

dtm−i

(
ρi(t)

dm−i

dtm−iE
(
ψ(t)

))
. (8.1)

Note that formula (8.1) resembles the classical normal form for the formally self-adjoint linear
differential operators [21][§1].

By constructions, the functions ρ1(t), . . . ,ρm(t) are invariants of the parameterized curve t 7→
J(4−n)

γ

(
ψ(t)

)
with respect to the action of the linear symplectic group on Wγ . We call the function

ρi(t) the ith symplectic curvature of the parametrized curve t 7→ J(4−n)
γ

(
ψ(t)

)
. Besides, the func-

tions ρ1(t), . . . ,ρm(t) constitute the fundamental system of symplectic invariant of the parametrized
curve t 7→ J(4−n)

γ

(
ψ(t)

)
, i.e. they determine this curve uniquely up to a symplectic transformation.

Moreover, these invariants are independent: for any tuple of m functions ρ1(t), . . . ,ρm(t) on the
interval I ⊆ R there exists a parameterized regular self-dual curve t 7→ Λ(t), t ∈ I, in the projective
space of dimension 2m−1 with the ith symplectic curvature equal to ρi(t) for any 1≤ i≤ m.

Also in the sequel we will need the following

Remark 8.1. Assume that E is the strongly canonical section of C(J(4−n)
γ ) with respect to the

parametrization ψ . Using the fact that the spaces span
{ d j

dt jE
(
ψ(t)

)}m

j=1
are Lagrangian and the

condition (7.2), it is easy to show that

σ̃γ

( d j

dt jE
(
ψ(t)

)
,

di

dt iE
(
ψ(t)

))
are either identically equal to 0, if i+ j < 2m− 1 or to ±1, if i+ j = 2m− 1, or they are poly-
nomial expressions (with universal constant coefficients) with respect to the symplectic curvatures
ρ1(t), . . . ,ρm(t) and their derivatives, if i+ j > 2m. �

Assume that at least one generalized Wilczynski invariant of rank 2 distribution D of maximal
class does not vanish identically. Let i0 be the minimal integer such that W2i0 on some (open) subset
R̃ of RD. Now let ψ be the canonical, up to a shift, parametrization of an abnormal extremal γ

given by (7.1) and (7.3). Let ρi be the ith symplectic curvatures of the parametrized curve t 7→
J(4−n)

γ

(
ψ(t)

)
. Then ρi is an invariant of the unparametrized curve J(4−n)

γ with respect to the action
of the linear symplectic group on Wγ and a reparametrization of γ , because the parametrization ψ
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on γ is determined by the unparametrized curve J(4−n)
γ itself. We say that ρi is the ith symplectic

curvature of the unparametrized curve J(4−n)
γ .

Remark 8.2. Note that by 5.4 the first symplectic curvature ρ1 is equal , up to the universal con-
stant multiple −m(4m2−1)

3 , to the Schwarzian derivative of the transition function from the canonical
parametrization of γ to any projective parametrization of γ . The invariant ρ1 coincides here, up
to the universal constant, with the projective Ricci curvature of the unparametrized curve in the
Lagrangian Grassmannian introduced in [27, 31].�

In contrast to the symplectic curvatures of a parametrized curves, the symplectic curvatures of
an unparametrized curve are dependent so that there are i0 polynomial relations (with universal
coefficients) between them and their derivatives (with respect to the canonical parametrization).
Therefore the following definition makes sense.

Definition 8.1. The tuple of functions
(

r1(τ), . . . ,rm(τ)
)

is called compatible if there exists a reg-
ular self-dual curve Λ in the projective space of dimension 2m−1 with at least one non-vanishing
Wilczynski invariant such that if ρi is the ith symplectic curvature of the unparametrized curve Λ,
then for all 1≤ i≤ m we have that ri(τ) = ρi

(
ψ(τ)

)
for the canonical parametrization ψ of Λ.

To explain why the invariants
(

r1(τ), . . . ,rm(τ)
)

are dependent note that there is another way

to construct the scalar-valued invariant of the unparametrized curve J(4−n)
γ (up to a symplectic

transformation and reparametrization) with the help of the Wilczynski invariants. Namely, for any
1≤ i≤ m−1 let

Ai(ψ(t)) = W2i(ψ(t))
(
ψ
′(t)
)

(8.2)

Then by the definition of i0 and the canonical parametrization, Ai ≡ 0 for 1≤ i≤ i0−1 and Ai0 = ε ,
where ε = 1 if W2i0 > 0 and ε =−1 if W2i0 < 0. Using the transformation rule (5.3) with ψ being a
projective parametrization of γ and ψ1 being the canonical parametrization of γ and also the Remark
8.2, it can be shown that all ρi with 1≤ i≤ i0 can be expressed as a certain polynomial in ρ1 and its
derivatives (with respect to the canonical parameter) having universal coefficients and with a free
term equal to zero if 1 ≤ i < i0 and equal to (−1)i0−1ε if i = i0. For example, if i0 = 1, i.e. the
nontrivial Wilczynski invariant W2 of the lowest order is non-zero, then there is only one relation

ρ2
(
ψ1(τ)

)
=−ε− 3(2m−2)(2m−3)

20
d2

dτ2 ρ1
(
ψ(τ)

)
+

αm,2

α2
m,1

ρ1
(
ψ(τ)

)2
, (8.3)

where the constants αm,1 and αm,2 are given by formula 1.5. Therefore a tuple
(

r1(τ), . . . ,rm(τ)
)

satisfying relation (8.3), with ρi
(
ψ(τ)

)
is replaced by ri(τ), is compatible. Relation (8.3) is anal-

ogous to [3, Lemma 5.1]. The first relation for i0 > 1 is obtained from (8.3) by replacing ε with
0.

The deduction of other relations in an explicit form in general needs an extra work and we will
not do it here, because we do not need such explicit relations in the sequel. However, in the case
when all invariants ρi(τ) are constants, ρi(t) ≡ ri, 1 ≤ i ≤ m, there is much more elegant way to
explain the role of the coefficients of polynomial (1.5) in the question of compatibility of the tuple
(r1, . . . ,rm), based on some elementary facts from the representation theory of the Lie algebra sl2.
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Given a tuple of m numbers (r1, . . . ,rm) let τ 7→ Λ(r1,...,rm)(τ) , τ ∈ R be the parameterized self-
dual curve in the (2m− 1)-dimensional projective space P2m−1 with the ith symplectic curvature
constantly equal to ri for all 1 ≤ i ≤ m. Note that the closure of the curve Λ(0,...,0) is the rational
normal curve.

Proposition 8.1. The curve Λ(r1,...,rm) has all Wilczynski invariants equal to zero if and only if the
tuple (r1, . . . ,rm) is exceptional in the sense of Definition 1.1.

Proof. Assume that the curve Λ(r1,...,rm) has all Wilczynski invariants equal to zero. Then by
Remark 5.1 Λ(r1,...,rm) belongs to a rational normal curve. It is well known [9, 15, 25] that the alge-
bra of infinitesimal symmetries of the rational normal curve (with respect to the action of SL2m) is
isomorphic to sl2 and it is actually equal to the image of the irreducible embedding of sl2 into sl2m.

To describe these infinitesimal symmetries note that R2m can be identified with the projectiviza-
tion of the space of homogeneous binary polynomials of degree 2m−1 (say in variables x1 and x2),
R2m ∼= Sym2m−1(R2). With this identification, the standard action of the group SL2 (the algebra sl2)
on R2 with coordinates (x1,x2) induces the standard irreducible representation of SL2 (sl2) into SL2m

(sl2m) The rational normal curve Λ̄(0,...,0), up to a projective transformation, is the projectivization of
the binary polynomials which are the (2m−1)th power of the linear forms in x1 and x2 . Therefore
any element of the image of the standard irreducible representation of SL2 in SL2m preserves the
curve Λ̄(0,...,0) and any element of the image of the standard irreducible representation of sl2 in sl2m

defines an infinitesimal symmetry of this curve. Moreover, it can be shown that there are no other
infinitesimal symmetries of this curve.

By the standard theory of sl2-representations ( [17, §11.1]) the image under this representation
of any diagonizable element of sl2 has the spectrum of the form

{−(2m−1)r,−(2m−3)r, . . . ,−r,r, . . . ,(2m−3)r,(2m−1)r}. (8.4)

(where over R the number r is either real or purely imaginary), which is an arithmetic progression
symmetric with respect to the origin. Besides any element of sl2 can be brought to the triangular
form (over C), therefore its image under the aforementioned embedding has also the spectrum of the
form (8.4). In other words, the spectrum of any infinitesimal symmetry of Λ(r1,...,rm) is an arithmetic
progression symmetric with respect to the origin..

On the other hand, since all symplectic invariants of the curve τ 7→ Λ(r1,...,rm)(τ) are constants,
this curve belongs to the orbit of the one-parametric group generated by an element X(r1,...,rm) of
the symplectic algebra (for the explicit form of Xr1,...,rm see [29], where it is exactly the matrix in
the structure equation for the canonical moving frame of the curve τ 7→ Λ(r1,...,rm)(τ)). Therefore
X(r1,...,rm) belongs to the algebra of infinitesimal symmetries of the curve Λ(r1,...,rm). Hence, by above
its spectrum is an arithmetic progression symmetric with respect to the origin. Finally, from the
explicit form of X(r1,...,rm) given in [29] it follows that the characteristic polynomial of X(r1,...,rm) is
exactly the polynomial (1.4), which completes the proof of one direction of the proposition.

In opposite direction, assume that the tuple (r1, . . . ,rm) is exceptional in the sense of Definition
1.1. Then the corresponding element X(r1,...,rm) has the matrix S+N in some basis, where S is the
diagonal matrix with the entries on the diagonal as in (8.4) for some r (and in the same order) and
N is the Jordan block. Then from the assumptions on the spectrum of X(r1,...,rm) it follows that in this
basis X(r1,...,rm) can be considered as an element of the image of the standard irreducible embedding
of sl2 into sl2m. This embedding is the algebra of infinitesimal symmetries of the orbit of the first
coordinate line with respect to the one-parametric group generated by N. Consequently, our curve
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Λ(r1,...,rm) belongs to the closure of this orbit, which in turn is a rational normal curve. This completes
the proof of our proposition. �

From Proposition 8.1 it follows that an exceptional tuple (r1, . . . ,rm) in the sense of Defini-
tion 1.1 is not compatible. Another consequence is the following

Corollary 8.1. The distribution D(r1,...,rn−3) is locally equivalent to D(0,...,0) (or, equivalently, has
the algebra of infinitesimal symmetries of the maximal possible dimension among all rank 2 distri-
butions of maximal class in Rn) if and only if the tuple (r1, . . . ,rn−3) is exceptional in the sense of
Definition 1.1.

Proof. In [12] we established that the following three equivalence problems are the same after
an appropriate identification of the objects involved in them: the equivalence of rank 2 distri-
butions of a special type, namely, associated with underdetermined ODE (the Monge equation)
z′(x) = F

(
x,y(x), . . . ,y(n−3)(x)

)
, the equivalence of the Lagrangians as in (1.7), up to a contact

transformation, a multiplication by a nonzero constant, and modulo divergence, and the equivalence
of their Euler-Lagrange equations, up to a contact transformation. Moreover, the latter problem, in
the case when the Euler-Lagrangian equation is linear coincides with the equivalence of the cor-
responding self-dual curves in projective spaces (up to a linear symplectic transformation). The
distribution D(r1,...,rn−3) is associated with the Monge equation (1.1), which in turn corresponds to
the Lagrangian (1.7) having the linear Euler-Lagrange equation. So, the question of equivalence of
the distributions D(r1,...,rn−3) and D(0,...,0) is reduced to the question of the equivalence of the curves
Λ(r1,...,rm) and Λ(0,...,0) from Proposition 8.1. Hence, our Corollary follows from Proposition 8.1.
�

The following simple lemma will be useful in the next section

Lemma 8.1. Let (r1,r2 . . . ,rm) be a tuple of m constants which is not exceptional in the sense of
Definition 1.1. Then among all tuple of the form (c2r1,c4r2, . . . ,c2mrm), where c is an arbitrary
non-zero constant, there exists exactly one tuple which is compatible in the sense of Definition 8.1

Proof. Let the curve τ 7→ Λ(r1,r2...,rm)(τ) be as in Proposition 8.1. Then since all ri are constants,
the germs of the curve Λ at two different time moments τ1 and τ2 are equivalent, up to a symplectic
transformation, i.e there exist a symplectic transformation S that sends the germ of Λ(r1,r2...,rm) at
τ1 to the germ of this curve at τ2. In particular, if E(τ) is the germ of the canonical sections of the
parametrized curve τ 7→ Λ(r1,r2...,rm)(τ) at τ = τ1, then SE(τ + τ1− τ2) is the germ of the canonical
section of this curve at τ = τ2. Therefore, all coefficients Bi in the expansion (5.2) are constants and
consequently the Wilczynski invariants have the form W2i = Ai (dτ)2i+2, 1≤ i≤m−1, where all Ai

are constants. Besides, not all of Ai are zero, otherwise by Proposition 8.1 the tuple (r1,r2 . . . ,rm) is
exceptional. Hence, there is a constant c such that τ = ct is the canonical parameter on the curve Λ.
Then the statement of the lemma follows from the formula (8.1). �

Remark 8.3. In the case when ρ1 is constant it can be shown that

ρi ≡
αm,i

α i
m,1

(ρ1)
i, ∀1≤ i≤ i0−1, (8.5)

ρi0 ≡ (−1)i0−1
ε +

αm,i0

α
i0
m,1

ρ
i0
1 . (8.6)
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where the constants αm,i are given by formula 1.5. If ρ1 is constant and all ρi, with 2≤ i≤ i0 satisfy
relations (8.5)-(8.6), then the tuple

(
ρ1, . . . ,ρi0 ,ρi0+1(τ), . . . ,ρm(τ)

)
is compatible. Another way to

prove Lemma 8.1 is by using this description of the compatible tuples: the required constant c can
be found explicitly using formula (8.6). �

Finally, taking the ith symplectic curvature for Jacobi curves (parameterized by the canonical
parameter) of all abnormal extremals living in R̃, we obtain the invariants of the rank 2 distribu-
tion D, called the its ith symplectic curvature and denoted also by ρi. The symplectic curvatures are
scalar valued functions on R̃.

9. The maximally symmetric models

Now we will find all structures from the considered classes having the pseudo-group of local sym-
metries of dimension equal to 2n− 3. As a consequence of Corollary 7.1 if an object from the
considered class has the pseudo-group of local symmetries of dimension equal to 2n− 3 then all
structure functions of the canonical frame (7.16) must be constant. Note that formula (8.1) can be
rewritten in terms of the canonical frame (7.16) as follows

[h,ε2m] =
m

∑
i=1

(−1)i+1(adh)m−i
(

ρi
(
adhm−i

ε1

)
mod span{e,h}, (9.1)

where ρi are the ith symplectic curvatures of a structures under consideration. This implies that the
symplectic curvatures of all order must be constant for any structure from the considered classes
having 2n− 3-dimensional pseudo-group of local symmetries . This together with Corollary 8.1
and Lemma 8.1 for the case of distributions implies that the following theorem is equivalent to
Theorem 1.1

Theorem 9.1. Given any tuples of n−3 numbers (r1, . . . ,rn−3) compatible in the sense of Definition
8.1 there exists the unique, up to local equivalence, rank 2 distribution in Rn of maximal class,
n≥ 5, with at least one non-vanishing generalized Wilczynski invariant such that its group of local
symmetries has dimension 2n−3 and the ith symplectic curvature is identically equal to ri for any
1 ≤ i ≤ n− 3. Such distribution is locally equivalent to the distribution D(r1,...,rn−3) spanned by the
vector fields from (1.2)-(1.3).

Proof. Let us prove the uniqueness. Take a structure from the considered class having the pseudo-
group of local symmetries of dimension 2n− 3 and the ith symplectic curvature identically equal
to ri for any 1 ≤ i ≤ m, where, as before, m = n−3. Then, as was already mentioned, all structure
functions of the canonical frame (7.16) must be constant. The uniqueness will be proved if we
show that all nontrivial structure function (i.e. those that are not prescribed by the normalization
conditions for the canonical frame) are uniquely determined by the tuple (r1, . . . ,rn−3).

Let ε1 be as in the Lemma 7.1. Denote

εi+1 := (adh)i
ε1, ν = [ε1,ε2m] (9.2)

In this notations the canonical frame (7.16) is {e,h,ε1, . . . ,ε2m,η}.
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(1) Let us prove that

[e,ε1] =−
1
2

ε1 (9.3)

where, as before e is the Euler field. Indeed, from (7.14)

[e,ε1] =−
1
2

ε1 +ae (9.4)

where a is constant by our assumptions. Then, using the Jacobi identity and the fact that

[e,h] = 0 (9.5)

we get that

[e,ε2] =
[
e, [h,ε1]

]
=
[
h, [e,ε1]

]
= [h,−1

2
ε1 +ae] =−1

2
ε2 (9.6)

Further, from the normalization condition (7.10) and formula (9.4) it follows that[
e, [ε1,ε2]

]
∈ span{e(λ ),h(λ ),ε1(λ )} (9.7)

On the other hand, using the Jacobi identity and formulas (9.4),(9.5),(9.6), we get that[
e, [ε1,ε2]

]
=
[
[e,ε1],ε2

]
+
[
ε1, [e,ε2]

]
= [−1

2
ε1 +ae,ε2]−

1
2
[ε1,ε2]≡−

a
2

ε2 mod span{e(λ ),h(λ ),ε1(λ )},

which together with (9.7) implies that a = 0.
(2) By analogy with the chain of the equalities (9.7) we can prove that

[e,εi] =−
1
2

εi, ∀1≤ i≤ 2m, (9.8)

which in turn implies by the Jacobi identity that[
e, [εi,ε j]

]
=−[εi,ε j], ∀1≤ i, j ≤ 2m. (9.9)

In particular, [e,η ] =−η .
(3) Let us show that

[h,ε2m] =
m−1

∑
i=1

(−1)i+1riε2(m−i) (9.10)

From (9.1) and our assumptions it follows that

[h,ε2m] =
m−1

∑
i=1

(−1)i+1riε2(m−i)+ γe+δh (9.11)

for some constants γ and δ . Applying ade to both sides of (9.11) and using the Jacobi
identity and formulas (9.5) and (9.8), we will get that γ = δ = 0, which implies (9.11).
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(4) Let us prove that

[εi,ε j] = di jη (9.12)

for some constants di j Indeed, in general

[εi,ε j] = bi je+ ci jh+di jη +
2m

∑
k=1

ak
i jεk (9.13)

where ak
i j, bi j, ci j and di j are constant by our assumptions. Applying ade to both sides of

(9.13) and using the Jacobi identity and the formulas (9.5), (9.8), and (9.9), we get

−[εi,ε j] =−di jη−
1
2

2m

∑
k=1

ak
i jεk (9.14)

Comparing (9.13) and (9.14) we get that ak
i j = bi j = ci j = 0, which implies (9.12).

(5) Moreover, by Remark 8.1 and the definition of the vector field η (see (9.2)) the constants
di j from (9.12) are either identically equal to 0, if i+ j < 2m or equal to (−1)i−1, if i+
j = 2m+1, or they are polynomial expressions (with universal constant coefficients) with
respect to the constant symplectic curvatures r1 . . . ,rm, if i+ j > 2m.

(6) The remaining brackets of the canonical frame are obtained iteratively from the brackets
considered in the previous items.

Therefore all nontrivial structure functions of the canonical frame are determined by the tuple
(r1, . . . ,rn−3), which completes the proof of uniqueness.

To prove the existence one checks by the direct computations that the models D(r1,...,rm) have
the prescribed symplectic curvatures and that all structure functions of their canonical frame are
constant similarly to the proof of the existence part of Theorem 3 in [11], devoted to the computation
of the canonical frame for D(0,...,0). �
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