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RIGID PATHS OF GENERIC 2-DISTRIBUTIONS ON
3-MANIFOLDS

I. ZELENKO AND M. ZHITOMIRSKII

Introduction. Let M be a smooth connected manifold, and E a bracket-gener-
ating (=nonholonomic) k-dimensional distribution on M (a smooth k-dimen-
sional subbundle of TM). A smooth path : [, fl] -o M is called admissible (or
E-path or horizontal) if it is tangent to E: (t) E((t)) for all [, fl]. Given
two points a, b e M, denote by fe(a, b) the space of all E-paths ,: [0, 1] M
joining a to b" (0)= a, (1)= b. The space fE(a, b) is not empty (by the Chow
theorem) and, being endowed with a natural Cl-topology, might have singular
points (called abnormal paths; several equivalent definitions can be found in [1-1,
[5], [6], [10]) and even isolated points (called rigid paths [5]). More precisely, a
path fE(a, b) is called rigid if any Cl-close enough path of e(a, b) is a smooth
reparametrization of ,. An arbitrary E-path , defined on an interval [, -1 is
called rigid if some (and then any) of its smooth reparametrization belonging to
f((), (fl))is rigid.

Admissible, abnormal, and rigid paths can be also defined in terms of control
theory. Assume for simplicity that M IR. Then the distribution E is generated
by k smooth independent vector fields v(x),..., Vk(X), X e IR, and can be inter-
preted as a control system

c u(t)v (x) +"" + Uk(t)Vk(X), (0.1)

where u(t)= (u(t),..., Uk(t)) is an arbitrary smooth vector function (called con-
trol). The E-paths are exactly the solutions of (0.1) defined on compact intervals.
The solution xu(t) corresponding to a control u(t) and defined on ! [, fl] is
rigid if there exists e > 0 such that it is a smooth reparametrization of the solu-
tion xw(t) corresponding to a control w(t), provided that the solutions join the
same points (Xu(a) Xw(a) and Xu(fl) x,(fl)) and maxt Ilu(t) w(t)ll < e.
The abnormal and rigid paths attract the attention of mathematicians working

in sub-Riemannian geometry, control theory, calculus of variations, and singu-
larity theory. The study of abnormal and rigid paths became very intensive after
the discovery by R. Montgomery ([8], 1-10], [11]) that a rigid path might be a
sub-Riemannian minimizer (the shortest admissible path joining its endpoints with
respect to a given sub-Riemannian metric, i.e., a metric on E; sub-Riemannian
metric allows us to measure the length of any admissible path) while it does not
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satisfy the sub-Riemannian geodesic equations (Euler-Lagrange equations for the
Lagrange problem in the calculus of variations). Moreover, a rigid curve might be
a sub-Riemannian geodesic with respect to any sub-Riemannian metric ([6], [8],
[10]).
Now that these phenomena have been discovered, the theory of abnormal and

rigid paths is being intensively developed, and the main directions are as follows:
(1) The relations between the rigidity, abnormality, and one of the optimality

properties. One can distinguish optimality properties which are (a) local-in-time
and global-in-paths-space (like the property to be a geodesic), (b) global-in-time
and local-in-paths-space [2];

(2) The description of abnormal and rigid paths of generic k-distributions on
n-manifolds or of distributions of a certain special class (say, with a fixed growth
vector).

Results in the first direction can be found in works [1], [2], [6], [8], [-10], [11].
The present paper is a contribution to the second direction presented, at the

time being, by the following results:
(1) A complete description of abnormal and locally rigid paths of Martinet

distributions [6], [9], [10]. A Martinet distribution is a 2-distribution on a 3-
manifold M3 with the growth vector (2, 3) at a generic point of M3 (points out-
side a smooth surface S) and the growth vector (2, 2, 3) at any point of S. The set
of all Martinet distributions is open in the space of all 2-distributions on M3, but
it is not dense.

(2) A complete description of abnormal and rigid paths of Engel distributions
([5], [6]; see also [11]). An Engel distribution is a 2-distribution on a 4-manifold
M4 with the maximum growth vector (2, 3, 4) at any point. The set of Engel
distributions is open in the space of all 2-distributions on M’, but it is not dense.

(3) A complete description of abnormal and locally rigid paths of 2-distribu-
tions on a 5-manifold M5 with the growth vector (2, 3, 4, 5) at any point ([5], [6];
see also [11]). The set of these distributions has codimension in the space of all
2-distributions on M5.

(4) Local existence theorems for rigid paths of generic 2-distributions on a
manifold M" of dimension n > 5: if p M" is a generic point, then for any admis-
sible direction at p there exists a rigid path passing through p in the direction
([5], [6]; see also [11]). Moreover, there exists a family of rigid fields of direc-
tions, i.e., a family of line subdistributions d of a 2-distribution E such that any
d-path is E-rigid [12].

(5) The absence of abnormal paths of strong bracket-generating distributions
(in particular, contact structures), and the absence of rigid paths passing through
a generic point of a generic k-distribution on an n-manifold if n < k + k(k 1)/2
(see [1], [-6], [8]).
The contribution of this paper is a complete and explicit description of all rigid

paths of generic 2-distributions on a 3-manifold M3. (It means that we describe
all rigid paths of 2-distributions on M3 of a certain open and dense set in the
space of all 2-distributions.) As far as we know, it is the first result of this type.
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FIGURE 1. Local behaviour of the leaves of the foliation F near (a) a saddle point,
(b) a focus point

The paper is organized as follows. The first section contains main results of
the works [7], [13], [14] concerning local geometry and normal forms of generic
2-distributions on M3. (We need to distinguish different types of singularities to
formulate main results; the normal forms are used in our proofs.) In particular,
we define the Martinet surface Smthe surface of all singular points (at which
a generic 2-distribution E on M3 does not define a contact structure), and
three types of points of S: transversality points (at which E is transversal to S),
saddle points, and focus points. Saddle and focus points are isolated points of S
at which E is tangent to S, they are singular points of the foliation F TS E
of S. The topological types of F near a saddle and a focus point are different (see
Figure 1).

It is known that all abnormal paths live in the Martinet surface S [6-1, [10].
Therefore, to describe rigid paths, we have to analyze the structure of all admissi-
ble paths in the Martinet surface. We do this in Section 2. A path containing only
transversality points of S is contained in a leaf of the foliation F, and therefore we
have to understand the local structure of paths in S containing saddle and focus
points. The foliation F is generated by a smooth vector field C on S vanishing at
saddle and focus points. (We define C in the first section and call it the character-
istic vector field.) For a path in the Martinet containing a saddle point p to be
admissible, it must lie in one of the C-invariant manifolds (stable and unstable
1-dimensional manifolds) that meet transversally at p (see Figure 1 (a)). A harder
question is about the possibility for a smooth path to contain a focus point. This
question is equivalent to asking whether the length of a spiral at Figure 1 (b) is
finite or infinite (with respect to some and then any metrics). This question is very
important for the sub-Riemannian geometry where only arc-length-parametrizable
paths are studied. To answer, we use a well-known normal form of a vector field
in a plane near a focus point at which the eigenvalues are pure imaginary. (The
characteristic vector field C has this property at any focus point.) We show that
any solution of a system of ordinary differential equations corresponding to C,
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defined on [0, ), and tending to a focus point as has the infinite length. It
follows that (a) there are no abnormal arc-length-parametrized absolutely contin-
uous paths containing focus points, and (b) there are no rigid (and even abnor-
mal) smooth paths containing focus points. All smooth admissible paths in S
can be divided into four types: (1) paths containing no tangency points, (2) paths
: [a, fl]- S such that the restriction of y to (a, fl) contains no tangency point,
one of the end points 7(a), ’(fl) is transversality and the other is a saddle point, (3)
paths 7: [a, fl] S such that the restriction of 7 to (a, fl) contains no tangency
point and both end points are saddle points, and (4) paths : [a, fl] - S for which
there exists (a, fl) such that 7(t) is a saddle point.
The possibility of the existence of immersed E-paths in S(E) of the types (2) and

(4) and nonclosed simple paths without tangency points is trivial. In Section 2 we
also give examples of paths of the type (3) and of admissible closed paths in S (the
endpoints coincide) containing transversality points only. The latter paths in our
examples are immersed, but noncontractible. We also give an example of an
admissible closed simple path in S that is contractible but contains two saddle
points. We formulate a conjecture on the nonexistence of closed contractible (in
S) abnormal paths without tangency points.
The main result is formulated in Section 3: a smooth immersed path : [a, fl] -M3 is rigid if and only if it is a path in the Martinet surface and, for any (a, fl),

the point 7(0 is a transversality point. It means that an immersed path is rigid if
and only if it belongs to one of the types (1)-(3). Note that immersed paths of the
first type might be closed or self-intersecting (if their image is contained in a cycle
of the characteristic vector field), and therefore we prove the rigidity of the restric-
tion to any compact interval of any periodic solution of the characteristic vector
field.
The fact that a path in S of the type (4) is not rigid is proved in Section 4: we

use a local normal form of a distribution near a saddle point to build a smooth
1-parameter deformation containing paths joining the same endpoints.

In Section 5 we introduce the notions of separating and strongly separating
surface of an admissible path. We believe that these notions have independent
significance. The existence of a separating surface is a stronger property than the
rigidity. We show (by using normal forms) that, locally, a separating surface exists
for any admissible path in S of one of the types (1)-(3). It proves the local version
of the main theorem.
To prove the global rigidity of paths of the types (1)-(3), we give an invariant

way of constructing strongly separating surfaces of any immersed nonclosed ad-
missible path in S without tangency points (Section 6), and a way of pasting of
separating surfaces (Section 7). We also prove that any immersed admissible path
in S(E) containing no tangency points has a strongly separating surface, even if it
is closed or self-intersecting.

Acknowledgements. We would like to thank Andrei Agrachev and Richard
Montgomery for a number of stimulating questions and discussions.
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I. Geometry of singularities and normal forms. In this section we present main
results of the works [7-1, [13], [14] on local geometry and normal forms of 2-
distributions on 3-manifolds in the form convenient for the problems of the sub-
Riemannian geometry.

1.1. Singular points. Let E be a smooth 2-distribution on a smooth manifold
M3 (a smooth 2-dimensional subbundle of TM3). Take a point p M3 and its
contractible neighbourhood U. Take a basis (vl, v2) of sections of E restricted to
U. The point p is called singular if

dim span(v(p), v2(p), Ev, v2] (p)) 2.

This condition can be replaced by an equivalent one, (09 ^ dco)(p) 0, where co is
a nonvanishing differential 1-form on U annihilating E (i.e., annihilating any sec-
tion of E).

Notation. We denote by S or S(E) the set of all singular points. Sometimes we
will call S(E) the Martinet surface.

1.2. Regular singular points. We will say that a singular point p is regular if

jJ (co ^ dco) # O.

Here jp is the 1-jet at the point p.

PROPOSITION 1.1. Let E be a #eneric 2-distribution on M3. Then either S(E)
or any point of S(E) is refular, and consequently S(E) is a smooth 2-dimensional

submanifold of M3.

Remark 1.1. As usual, when saying that some statement holds for a generic
2-distribution, we mean that, in the set of all 2-distributions, there exists an open
dense subset (with respect to the Whitney topology, see [4], [7]) such that the
statement is true for every 2-distribution of this subset.

1.3. Transversality and tangency singular points.
point of a 2-distribution E.

Let p be a regular singular

Definition. We will say that p is a transversality singular point if E is transver-
sal to S(E) at p, i.e., E(p) + TpS(E) TpM3. Regular singular points violating this
condition will be called tangency points. In other words, a regular singular point
p is a tangency point if E(p) TpS(E).

1.4. Characteristic vector field on the Martinet surface. Assume that, in some
domain D M, all singular points of the distribution E are regular, and the

Throughout the paper, manifolds, functions, vector fields, differential forms, distributions, etc., are
assumed to be of the class C, and curves and paths are assumed to be of the class C1, unless there is
an explicit mention to the contrary.
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restriction of E to D can be given as a field of kernels of a nonvanishing 1-form 09.

Denote by 091 the pullback of 09 to the set S(E) D. (This set is a smooth surface
in D by Proposition 1.1.) One can prove that the Martinet surface is always
orientable. Take a nondegenerated volume form # on S(E)c D, and define a
vector field C on S(E) c D by the relation C A # o91 (i.e., #(C, Y) 091(Y) for
any vector field Y on S(E) c D).

Definition. Any vector field C defined as above will be called a characteristic
vector field on the Martinet surface.

Remark 1.2. Note that C depends on the choice of 09 and #, but any change of
09 or # leads just to the multiplication of C by a nonvanishing function. This
means that the module of vector fields on S(E)c D generated by any characteris-
tic vector field C on S(E) c D is invariantly related to E.

PROPOSITION 1.2. Let p be a regular singular point, let C be an arbitrary char-
acteristic vector field on a neighbourhood U S of p in S, and let (v l,/)2) be an
arbitrary basis of sections of E restricted to a neighbourhood of p in M3. The
following statements are equivalent:

(a) p is a tangency point,
(b) C(p) O,
(c) dim span(vl(p), v2(P), IV 1, v2-l(p), [Vl, [Vl, V2]](P), E/)2, EVl, V2]](P)) 2.

Of course, condition (b) is independent of the choice of C, and condition (c) is
independent of the choice of the basis of sections (Vl, v2).

PRO’OSITION 1.3. Let p be a tangency point, and let C be an arbitrary charac-
teristic vector field on a neighbourhood of p in the Martinet surface. The sum of the
eigenvalues of the linearization of C at p is equal to O.

Note that if C and C are two characteristic vector fields, and if 21,2 and 21,2
are their eigenvalues at the same tangency point, then there exists a real factor
k 0 such that k21 ,1, k22 2 or k21 22, k22 ’1"

1.5. Hyperbolic, elliptic, and parabolic tangency points. Proposition 1.3 allows
us to distinguish three types of tangency points. Let p be a tangency point, and let
C be a characteristic vector field on a neighbourhood of p in the Martinet surface.
We will say that p is hyperbolic if the eigenvalues of C at p are real and nonzero
(i.e., 1 up to a real nonzero factor), it is elliptic if they are pure imaginary (i.e.,

x//- 1 up to a real nonzero factor), and it is parabolic if both eigenvalues are
equal to 0.
By Proposition 1.3, any tangency point is either hyperbolic, or elliptic, or para-

bolic.

PROPOSITION 1.4. Let E be a generic 2-distribution. Then either (1) there are
no tangency points or (2) any tangency point is either hyperbolic or elliptic (there
are no parabolic tangency points), and then the tangency points are isolated.
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1.6. Foliation on the Martinet surface. Denote by T(E) the set of all tangency
points of a distribution E. Assume that all singular points of E are regular. At
each point p S(E) T(E), the direction lp E(p)c TpS(E) is invariantly related
to E. We obtain a field of directions F (/} on S(E) T(E) (or, equivalently, a
line subbundle of T(S(E)- T(E)). It induces a foliation of $(E)- T(E) by curves
which we also denote by F. The tangency points are singular points of F. It is
clear that if C is a characteristic vector field on a domain U S(E), then F
restricted to U is generated by C in the sense that C(p) l for any transversal
point p U. Therefore, the behaviour of the leaves of F near the tangency points
is defined by the local phase portrait of C. (The leaves of F are the phase curves of
C.)
The phase portrait of any characteristic vector field C near a hyperbolic tan-

gency point is a saddle (see Figure 1 (a)), since the eigenvalues of C at p are real
and of different signs. The phase portrait of C near an elliptic tangency point
depends on the nonlinear part of the Taylor series of C at p. It turns out that it is
always a weak nondegenerated focus (Figure 1 (b)).

1.7. Weak nondegenerated focus. The definition of a weak nondegenerated fo-
cus is as follows. Let C be a vector field on a 2-manifold S having pure imaginary
eigenvalues +V/- 1 at a point p S. There exist local coordinates x, y on S
(near p) such that the 3-jet of C at p is as follows:

tTXl ( + bR2) + rex2R2)x2
j3C (xxIR2 + ( + bg2)xE)w + (-x

where R2 x2 q- x2. This means that in the polar coordinates R, q9 (x R cos
y R sin q), the restriction of the field C to a small enough neighbourhood of p
is given by the system of ordinary differential equations of the form

/ xRa + o(R3), (b -a + o(R). (1.1)

Definition. We say that the phase portrait of C near p is a weak nondegener-
ated focus if the eigenvalues of C at p are pure imaginary, and the parameter x in
the normal form (1.1) is not 0.

If the phase portrait is a weak nondegenerated focus, then the phase curves of
C located near p are spirals (Figure 1 (b)). If x < 0, then p is an asymptotically
stable singular point of , if x > 0 for the field -C (see [3]).

PROPOSITION 1.5. Let p be an elliptic tangency point of a 2-distribution E. Then
the local (near p) phase portrait of any characteristic vector field C is a weak
nondegenerated focus.

1.8. Terminolooy: saddle and focus points. Proposition 1.5 allows us to call
elliptic tangency points focus points. We will use this term, as well as the term
saddle point for a hyperbolic tangency point.
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1.9. The growth vector. Given a 2-distribution E on a neighbourhood of a
point p generated by vector fields 1)1 and 1)2, define the sequence V1, V2, of
modules of vector fields: V1 is generated by 1)1 and 1)2, and V+I is generated by the
vector fields of V and all the Lie brackets [1), 7], where 1) V1, V/. Denote by
as(p) the dimension of the subspace {1)(p), 1) V) c TpM3. If E is a bracket-gener-
ating distribution, then, by definition, for any p M3 there exists an s such that
al(p) as(p) 2, as+l(P) as+2(P) 3. The tuple (2, 2, 2, 3) (s times
the number 2) is called the growth vector of E at the point p.

It follows from the definition of a singular point and from Proposition 1.2 that
(a) the growth vector at any nonsingular point is (2, 3),
(b) the growth vector at any transversality singular point is (2, 2, 3).

PROPOSITION 1.6. The growth 1)ector at any saddle or focus point is (2, 2, 2, 3).

Remark 1.3. The growth vector at a generic parabolic tangency point (i.e.,
parabolic tangency points of generic 1-parameter families of 2-distributions) is
also (2, 2, 2, 3); this means that the three types of the tangency points cannot be
distinguished in terms of the growth vector.

1.10. Normal forms. It follows from the classical Darboux theorem that, near
a nonsingular point of a 2-distribution E, there exist coordinates x, y, z in which
E is generated by vector fields vl c3/tx, 1)2

PROPOSITION 1.7. Let p be a transversality singular point of E. Then there exist
coordinates x, y, z near p such that the germ of E at p is generated by vector fields

v
t3x v2 - + x2

Oz" (1.2)

Note that if E is generated by vector fields (1.2), then the Martinet surface is the
(y, z)-plane and any characteristic vector field has the form Off?y, up to multiplica-
tion by a nonvanishing function.

PROPOSITION 1.8. Let p be a saddle point of E. Then there exist coordinates x,
y, z near p such that the germ of E at p is generated by vector fields

1)1 OX I)2 -Z + (xy + X2Z -- bx3z2)
Oy (1.3)

where b is a parameter (distinguishing nonequivalent germs).

If E is generated by vector fields (1.3), then the Martinet surface is given by the
equation y + 2xz + 3bx2z2 0. The functions x and z are coordinates on the
Martinet surface, and any characteristic vector field has the following form in
these coordinates (up to multiplication by a nonvanishing function):

C (2x + (6b 1)x2z 2bx3z2)-O-- (2z + 6bxz2)ffz (1.4)
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The invariant submanifolds L1, 2 of any characteristic vector field on S(E) con-
taining the saddle point p (0, 0, 0) are given by the equations x y 0 and
z y 0 (the z-axis and the x-axis). For the characteristic vector field (1.4), the
z-axis is the stable manifold, and the x-axis is the unstable manifold.
Of course, there is no qualitative difference between the invariant manifolds L1

and L2 (if we do not fix a characteristic vector field), and the following slight
generalization of Proposition 1.8 holds.

PROPOSITION 1.8’. Let p be a saddle point of E. Let L be one of the invariant

manifolds L, 2 of a characteristic vector field containin9 p. Then (a) there exist
coordinates x, y, z near p such that E is 9enerated by vector fields (1.3) and L is
the x-axis, (b) there exist coordinates x, y, z near p such that E is 9enerated by
vector fields (1.3) and L is the z-axis.

Proof. In coordinates of the normal form (1.3), E is given by a Pfaffian equa-
tion

co dy- (xy + X2Z + bx3z2) dz -O. (1.5)

It suffices to show that there exists a change of coordinates which replaces the
x- and the z-axis and preserves (1.5), i.e., preserves co up to the multiplication by a
nonvanishing function. Such a change can be constructed as follows. Change x by
z and z by x, and then change y by y + xyz and divide the obtained 1-form by
(1 + xz). We obtain a 1-form with the 3-jet dy + xy dz + xz2 dx which can be
reduced to the 3-jet of co by the change of y -y + xZz2/2, Z --Z and multipli-
cation by (-1). Therefore there exists a change replacing the x- and z-axis and
bringing (1.5) to the form col 0, where j3co j3co. Now we can use a particular
result of [14]: any Pfaffian equation given by a 1-form with the 3-jet j3co is re-
ducible to (1.5) by a smooth change of coordinates with the identity of linear
approximation. El

The following theorem gives an exact normal form near a focus point.

PROPOSITION 1.9. Let p be a focus point of E. Then there exist coordinates x, y,
z near p such that the 9erm of E at p is 9enerated by vector fields

01 OX V2 -Z + (xy + X3/3 + XZ2 -[- bXaz2)
63

where b is a parameter distinguishin9 nonequivalent 9erms.

2. Admissible curves in the Martinet surface. Beginning from this section, we
assume that a 2-distribution E on M3 satisfies the following two genericity condi-
tions:

Any singular point of E is regular (see Section 1.1),

There are no parabolic tangency points (see Section 1.5).

(G1)

(G2)
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We keep the notations of Section 1 and denote by S S(E) the set of all singu-
lar points (the Martinet surface) and by T T(E) the set of all tangeney points
(consisting, under the generieity conditions (G1) and (G2), of saddle and focus
points).

It is known that all abnormal (and therefore all rigid) smooth (and even abso-
lutely continuous) paths lie in the Martinet surface (see [6], [10]). Therefore,
to describe all rigid paths, we have to analyze the structure of all admissible paths
in S.

2.1. Admissible paths in S(E)- T(E). The following proposition is an easy
corollary of the definition of a characteristic vector field and the foliation F on
the Martinet surface.

PROPOSITION 2.1. (1) A path in S(E)- T(E) is admissible if and only if its
image is contained in a single leaf of the foliation F.

(2) Let C be an arbitrary characteristic vector field on a domain U c S(E), free
of tangency point. Let be an arbitrary immersed admissible path2 in U. There
exists a smooth reparametrization of such that is a solution of the equation

(t) C((t)). (2.1)

Proof. The first statement follows from the definitions. To prove the second
one, let us note that an immersed admissible path y in U satisfies the differential
equation (t) c(t)C(y(t)), where C is an arbitrary characteristic vector field, and
c(t) is a nonvanishing function (depending on C). Assume that y is defined on an
interval I. Let (t)= c(s)ds, ’ (I). Since is either an increasing or de-
creasing function, the curve defined on ! by the relation (tI)(t)) y(t), e ! is a
reparametrization of , and it satisfies the equation (2.1).

2.2. Admissible paths in S(E) containin9 a saddle point. Let p S(E) be a sad-
dle point, and let C be an arbitrary characteristic vector field on a neighbourhood
U of p in S(E). Denote by La, 2 the two C-invariant 1-dimensional submanifolds
of U meeting transversally at p. The next observation also follows from the defini-
tion of a characteristic vector field and a saddle point.

PROPOSITION 2.2. A C path in the neighbourhood U containing the saddle point
p is admissible if and only if its image is contained in one of the submanifolds La,2.

2.3. Admissible paths in S(E) containing a focus point. Let p S(E) be a focus
point. Take any characteristic vector field C for which p is a weak nondegenerated
stable focus. (We can take an arbitrary characteristic vector field and change its
sign if necessary; see Section 1.7.) Take an attracting neighbourhood U of p in S(E)
(a neighbourhood such that any solution of the equation (2.1), starting at a point
of U, tends to p as - ). By Proposition 2.1, we have the following statement.

Here and below, by an immersed path we mean a C mapping y: I [, fl] M such that (t) : 0
for any of the interval I includino the points a and =/3.
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PROPOSITION 2.3. Any solution in U of (2.1) is an admissible curve, and any
admissible curve 7: [a, ) U such that limt_o 7(0 P and (t) 4: O, e [, )
appears in this way, up to a reparametrization.

It turns out that the length of the spiral at Figure 1 (b) is infinite. (It is clear
that if the length of a curve is infinite with respect to some metric, then the same
is true for any metric.) More precisely, the following statement holds.

LEMMA 2.1. Let C be a characteristic vector field for which a focus point p is
stable. Let U be an attractin9 neighbourhood of p in S(E). The length of any solu-
tion 7: [0, )- U of the equation (2.1) is infinite.
The following statements, which we formulate as theorems, are corollaries of

this lemma and Proposition 2.3.

THEOREM 2.1. Any admissible absolutely continuous curve3 in S(E) of finite
length contains no focus points.

THEOREM 2.2. Any C admissible path in S(E) contains no focus points.

THEOREM 2.3. Any absolutely continuous arc-length-parametrized abnormal path
contains no focus points.

Proof of Lemma 2.1. We can use the polar coordinates in which C is given by
the system of ordinary differential equations (1.1). It suffices to prove that if c < 0
and -0, then any solution 7: [0, )- ]R2 of the equation (2.1) has infinite
length with respect to the metrics dR2 -F RE dq2 (corresponding to the Euclidean
metrics dx + dx2). In other words, we have to prove the divergence of the
integral

f: x//z(t) + (2.2)R2(t)(o2(t) dt

for any solution R(t), q(t), defined on [0, o), of the system (1.1). For big enough,
we have

(b(t))2 > a2/4,

l(t) <- R3(t) < O.
(2.3)

The latter inequality implies that, for big enough, there exist positive constants

C1 and C2 such that

C1R2(t) >, (2.4)
1 +C2t

A curve is defined on either a compact or open interval (may be infinite); a path is a curve defined
on a compact interval.
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and the divergence of the integral (2.2) follows from (2.3) and (2.4). (The function
in (2.2) behaves as 1/x/ as t

2.4. Saddle connections. We have shown that any admissible path in S(E) con-
tains no focus points, and that it may contain saddle points. We have also shown
that there exist immersed paths starting, ending, or passing through a saddle
point. One can ask if it is possible that an immersed admissible path in S(E)
contains two or more saddle points. The following example gives the positive
answer: the saddle connections in the Martinet surface are possible.

Example 2.1. Consider a 2-distribution E on IRa generated by vector fields
t3/dx and d/dz + (xy + f(x)z)(t3/dy), where f(x) is a smooth function such that
f’(x) and f"(x) do not vanish simultaneously. The Martinet surface S is given by
the equation y f’(x)z, and a point p S is a tangency point if and only if it has
coordinates (Xo, 0, 0) such that f’(xo) 0. Any tangency point is a saddle point;
therefore E satisfies the genericity conditions (G1) and (G2). A path t (t, 0, 0)
defined on [, fl] is an admissible path in S, and if f’()= f’(fl)= 0, then this
path joins the saddle point (, 0, 0) to the saddle point (/3, 0, 0). (One can take, for
example, f(x) x3/3 x, o 1, fl 1.)

Remark 2.1. We have shown the possibility of saddle connections for distribu-
tions satisfying the genericity conditions (G1) and (G2). On the other hand, one
can prove that, in the space of all 2-distributions on M3, there exists an open and
dense set such that, for any 2-distribution of this set, there are no admissible
curves in the Martinet surface containing more than one saddle point.

2.5. Closed paths in the Martinet surface. One also can ask about the possibil-
ity of existence of immersed abnormal closed paths (paths : [,/3-1 S such that
() (fl)).A simple example of a distribution without tangency points for which
closed abnormal paths exist is as follows.

Example 2.2. Take a torus T2-- {(, I)mod 2r}, and let M T2 x IR
{(b, , z)}. Consider a globally defined 2-distribution on M generated by vector
fields O/Oz and / + (z2 + A(b, ff))(O/O), where A is a periodic function. The
Martinet surface S is given by the equation z 0, i.e., S T2. It contains no
tangency points. The vector field C O/Ob + A(b, )(O/Off) is a characteristic vec-
tor field on S. One can choose A so that all maximal phase curves of C are cycles
(for example, A 0) or so that C has a finite number of limit cycles (for example,
A sin ). Any immersed parametrization of any cycle is an immersed abnormal
closed path.

In this example the Martinet surface is a torus, and the closed paths are non-
contractible.4

The following example gives a smooth closed simple abnormal path which is
contractible, but it contains two saddle points.

Here and below, by noncontractible we mean noncontractible in the Martinet surface.
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Example 2.3. Consider a distribution E on ]R3 given by the differential 1-form
dy (xy + A(x, z)) dz, where A (x2 + z2 1)2. The Martinet surface S is given
by the equation y -4x(x2 + z2- 1). A characteristic vector field can be de-
fined on IRa: in the coordinates x, z on S, it is as follows:

t32A 8A) 63 t32A 3
(2.5)C

\dxdz
+ A X-x 8x dx2 dz"

The vector field C has four singular points:

al (0, 1), a2 (0, -1), a3 (0.55, -0.25), a4 (-0.55, 0.25).

A simple calculation shows that the eigenvalues of C at al and a2 are 1, and at
a3 and a4 are + x//- 1 up to a nonzero factor. Therefore, E has four tangency
points, two of which are saddle points and two focus points, and E satisfies the
genericity conditions (G1) and (G2).

It is easy to check that the unit circle x2 + z2 1 0 is the union of two phase
curves of C and the points a and a2. (The phase portrait of C is shown at Figure
2.) Therefore the path - (cost, O, sint), [0, 2hi is a smooth closed simple con-
tractible E-path in S(E).

FIGURE 2. The phase portrait of the characteristic vector field (2.5)
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CONJECTURE. 5 Let E be a smooth 2-distribution on M3 satisfyin9 the 9enericity
conditions (G1) and (G2). Any closed E-path in S(E) T(E) without return points6

is noncontractible. (Equivalent statement: A characteristic vector field has no con-
tractible cycles.) If it is true, then in the case where S(E) has the topological type of
plane or sphere, any closed abnormal path without return points should contain at
least one saddle point.

3. Main theorems

THEOREM 3.1. An immersed E-path y defined on an interval [o, fl] is rigid if and
only if the restriction of to the open interval (, fl) is a curve in S(E) T(E) (i.e.,
all points of the restriction are transversality singular points of E), and each of the
end points () and y(fl) is either a transversality point or saddle point.

Remark 3.1. The criterion of the local rigidity is exactly the same, and it is a
logical corollary of Theorem 3.1.

It follows from the results of the previous section that we can divide all smooth
E-paths in S(E) into four types:

Type 1. Paths containing transversality points only. (In particular, dosed paths.)
Type 2. Paths y: [, fl] S such that y(t) is a transversality point for all

(0q fl). Exactly one of the end points y(), y(fl) is a saddle point, and the other end
point is a transversality point.

Type 3. Paths y: [0, fl] S such that y(t) is a transversality point for all
(, fl), and both of the endpoints (00, y(fl) are saddle points (the case y(00 y(fl)
is not excluded).

Type 4. Paths y: [, 3] - S such that for at least one (, fl)the point y(t) is a
saddle point.

Using these types of admissible paths in S(E), we can join the results of Section
2 and Theorem 3.1, and obtain the following.

THEOREM 3.2. (1) Any rioid path is contained in the Martinet surface.
(2) Any C E-path in the Martinet surface is of one of the types (1)-(4).
(3) Any immersed E-path in the Martinet surface of one of the types (1)-(3) is

rigid.
(4) Any immersed E-path in the Martinet surface of the type (4) is not rigid.

Remark 3.2. As we mentioned, the first statement of Theorem 3.2 is proved
in [6], [10]. The second statement is proved in our Section 2. So, to prove
Theorems 3.1 and 3.2, we have to prove the third and the fourth statements of
Theorem 3.2.

This appeared in discussions with A. Agrachev.
A point to is a return point of a pass 2,: [0, fl] M if to e (, fl) and for any > 0 there exist
(to e, to) and (to, + e) such that 7(tl) y(t2).
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Remark 3.3. The local rigidity of paths of the first type is proved in [10], [9],
[6]. The global rigidity of non-self-intersecting paths of the type (1) is proved
(independently and by a different method) in [2].

Remark 3.4. We have shown that a characteristic vector field might have cycles
containing transversality points only. An immersed path in such a cycle might be
closed, it might repeat the cycle any finite number of times, and it might be
nonclosed, but self-intersecting. By Theorem 3.2, all these paths are rigid as well.
In other words, one of the statements of Theorem 3.2 is the rigidity of the restric-
tion to any compact interval of any periodic solution of the system of ordinary
differential equations defined by a characteristic vector field.

Remark 3.5. We have shown that the image of any E-path in S has an im-
mersed parametrization. The third and the fourth statements of Theorem 3.2
concern immersed paths only. Note that a smooth nonimmersed path of the first
type is not rigid even if it is simple (without multiple points) and even if the
derivative vanishes only at one of the end points. Take, for example, the distribu-
tion on IR3 generated by vector fields (1.2) (the Martinet normal form) and the
path (0, 2, 0) defined on [0, 1]. It is a smooth simple admissible path in the
Martinet surface, it contains no tangency points, and it is easy to show that it is
not rigid.

4. Proof of the fourth statement of Theorem 3.2. In this section we prove that
if an immersed path in S is defined on l-s, fl] and, for some to (, fl), the point
p- (to) is a saddle point, then is not rigid. First we reduce this statement to
the following.

LEMMA 4.1. Let E be a distribution generated by vector fields (1.3), and let a be
a positive number. Consider a path # of the form I(t)= (0, O, t) defined on the
interval I-a, a]. There exists a family l of C E-paths defined on I-a, a] such
that

(a) for any e, the path ! is not a reparametrization of the path #;
(b) # tends to # in the Cl-topology;
(c) for any e, the path # joins the point (0, O, -a) to (0, O, a) (the end points of

);
(d) #(t) #(t) is a fiat function7 at the points + a.

Let us show how the fourth statement of Theorem 3.2 follows from Lemma 4.1.
Let p be a saddle point, let 7 be an immersed E-path in S defined on [, fl], and
let V(to) p, to (, fl). By Proposition 1.8, there exists a neighbourhood U of p
and coordinates (x, y, z) in U such that p (0, 0, 0), and the restriction of E to U
is generated by the vector fields (1.3). By Proposition 2.2, the restriction of to a
small enough interval containing to is a curve in the intersection of U with either
x-axis or z-axis (see Section 1.10). By Proposition 1.8’, we can assume without

A function is called flat at a point if it vanishes at this point along with all its derivatives.
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loss of generality that this restriction is a curve in the z-axis. Since V is immersed,
there exists a reparametrization of V defined on [- 1, 1] such that (0) (0, 0, 0),
and the restriction of to a small enough interval [-5, 6] is a path in U of the
form (t)= (0, 0, t). It suffices to prove that the path is not rigid. Let a 6/2,
and let # be the restriction of to the interval [-a, a]. Let #8 be a family of paths
defined on I-a, a] and satisfying the properties formulated in Lemma 4.1. Define
a family of E-paths on [- 1, 1] by the relation (t) #(t) as t [-a, a], and
(t) (t) as [-1, 1]- I-a, a]. It is clear that none of the curves is a
reparametrization of , that all these curves join the endpoints of , and that
tends to in the C1-topology. Therefore 7 is not a rigid path.

Proof of Lemma 4.1. Take any odd function f(t) on the interval I-a, a] which
is flat at the points _+ a, and a function g(t) satisfying the differential equation

g’(t) ef(t)g(t) + e2tf2(t) + eSbt2fs(t)

and the initial condition o(-a)= O. Note that the solution O(t) is an even func-
tion. (The function z(t)= O(t)- O(-t) satisfies the differential equation z’(t)=
ef(t)z(t) and the initial condition z(0) 0; therefore z(t) 0.) Therefore o(a) O.
Consider now a family of paths #8: [-a, a] IR3 of the form

p(t) (ef(t), g(t), t).

It is clear that this family satisfies the conditions (a)-(d) of Lemma 4.1. Note also
that

’t#()= f’(t)v(#(t)) + v2(#(t)),

and therefore the arcs # are admissible.

5. Separating surfaces. In this section we introduce the notion of a separating
surface of an admissible path. The existence of a separating surface is a stronger
property than the rigidity. We prove (Lemma 5.1 and Lemma 5.2) the existence of
a separating surface of a certain E-path in S(E) where E is a distribution gener-
ated by vector fields (1.2) (normal form near a transversality point) or (1.3) (nor-
mal form near a saddle point). These results imply the local rigidity of any path of
one of the types (1)-(3) given in Section 3.3. They also are the base for the proof
of the global rigidity.

5.1. Definition of a separating surface. Let be a path defined on an interval
[,/], and let be a path defined on a subinterval [,/] of [,/]. Denote by
the number inf{t [,/]: (t) Im 7}. (If y(t) Im , for all [,/], then we de-
fine z to be equal to

Definition. The restriction of y to (z, fl] will be called the splitting part of
with respect to 7 and will be denoted SP(, ). The point ,() will be called the
splitting point, and z the splitting parameter.
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Let 7: [,/] M3 be an E-path, and let U be a neighbourhood of the image of
7 in M3. Let G be a surface in U containing the path 7 and dividing U onto two
open connected parts U/and U-.

Definition. We will say that G is a separating surface of the path y in the
neighbourhood U if, for any E-path defined on a subinterval [,/] of [, fl-!
which is Cl-close enough to Ylt,9 and starts at a point of Im 7, the curve SP(, 7)
is contained in U/. The set U/ will be called the positive side of G with respect to
7, and the set U- the negative side.

It is obvious that the existence of a separating surface of an path 7 is a stronger
property than the rigidity of 7.

PROPOSITION 5.1. Assume that an E-path 7 has a separating surface in a neigh-
bourhood U of the image of 7. Then 7 is a rigid path.

We need one more property of E-paths that is even stronger than the existence
of separating surfaces.

Definition. We will say that G is a strongly separating surface of the path y in
the neighbourhood U if it is a separating surface and if any E-path y, defined on a
subinterval [,/] of [, fl], which is Cl-close enough to 71t, and starts at a
point of U/, stays in U/ for all e [,/].
The notions of separating and strongly separating surface are illustrated at

Figure 3 and Figure 4 respectively. These notions are well defined for a closed
path as well (see Figure 5).

Remark 5.1. It is clear that if G is a separating or strongly separating surface
of a path 7 defined on [,/], then the same is true for any reparametrization 7 of

FIGURE 3
A separating surface G of an admissible path 7 joining a to b: Cl-close admissible paths starting
at a point of 7 leave G and stay "above" G as soon as they leave ?.
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FIGURE 4
A strongly separating surface G of an admissible path , joining a to b: Ca-close admissible paths
starting at a point of 7 leave G and stay "above" G as soon as they leave ,. Ca-close admissible
paths starting "above" G stay "above" G.

, preserving the orientation of 7. Moreover, the positive sides of G with respect
to 7 and are the same. On the other hand, if we change the orientation of 7, then
G might be not a separating surface of 9. (See the second example in the next
subsection.) In the case of changing the orientation, we preserve the separating
surface G, but changing its positive side by the negative one is also possible. (See
the first example in the next subsection.)

5.2. Examples. Our first example is the existence of a strongly separating sur-
face of admissible paths in S(E), where E is the distribution generated by vector
fields (1.2) (the Martinet normal form). Note that for this distribution any im-
mersed E-path in the Martinet surface {x 0} has the form x(t)= O, y(t)= t,
z(t) 0, up to reparametrization.

LEMMA 5.1. Consider a distribution E on IRa 9enerated by vector fields (1.2)
and the E-path (t)= (x(t), y(t), z(t))= (0, t, O) defined on an interval [, fl]. The
surface G {z 0} is a stronoly separatin9 surface in U ]R3 of 7. The positive
side of this surface is the semispace { (x, y, z): z > 0}.

Proof. Let (t)= ((t), 37(0, (t)) be an E-path on [,/] = [, fl]. It follows
from the CX-closeness of and ]t,t that

y’(t) > 0, e [,/3. (5.1)

The admissibility of implies the existence of functions ul (t) and u2(t such that

(t) u(t), )(t) u2(t), (t) 2(t)u2(t). (5.2)
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FIGURE 5
The cylinder G is a strongly separating surface of an admissible closed path ,. Cl-close admissible
paths starting at a point of leave G and stay outside G as soon as they leave . Cl-close
admissible paths starting outside G stay outside G.

By (5.1), U2(t > 0 for all t, and therefore the following inequality holds:

Y(t) > O, [,/]. (5.3)

The relations (5.2) also imply

’(t) 0 (t) 0, (5.4)

and the statement of the lemma follows easily from (5.3) and (5.4). E]

Remark 5.2. In the same way, we can prove that the path ,(t) (x(t), y(t), z(t))
(0, -t, O) has the same separating surface {z 0}, but in this case the positive
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side is the semispace {z < 0). Therefore, changing the orientation of 7 leads to a
change of the positive and negative sides of the separating surface G.

In the second example we consider the distribution E generated by vector fields
(1.3) (normal form near a saddle point p), and show the existence of a separating
(not strongly separating) surface of any immersed path starting at p.

LEMMA 5.2. Consider a distribution E on IRa #enerated by vector fields (1.3)
and the E-path 7(0 (x(t), y(t), z(t)) (0, O, t), [0, fl], fl > 0. The surface {y 0}
is a separatin# surface in U IR3 of 7. The positive side of this surface is the
semispace { (x, y, z): y > 0}.

Proof. Let (t)= ((t), 37(0, (t)) be an E-path defined on a subinterval I-,
of [0, fl], Cl-close enough to the path 71t,1, and such that () Im 7, i.e., ()
(0, 0, c), c e [0, fl]. The admissibility of implies the relation

Define a function

f’(t) ((t);(t) + :2(t)(t) + b3(t)2(t))z’(t).

Then

Q(t) exp yc(s)U(s) ds [, fl].

(Q(t).(t))’ Q(t)u(t)(2(t)(t) + ba(t)(t)).

For all (,/] we have

O(t) > o,

U(t) > O, (5.5)

(t) > 0, (5.6)

2(t)(t) + bYca(t)2(t) > (1/2)2(t)(t) > O. (5.7)

(The inequalities (5.5)-(5.7) follow from the Cl-closeness of ff and 7 and from the
relation 5(0) > 0.) These inequalities imply

(Q(t)f(t))’ > O, (, ],

(Q(t)y(t))’ o(t) o.

Since () 0 and Q(t) > O, we obtain that y(t) > 0 for all (, fl] and that if
y(t) 0 for some t, then 37(s) 2(s) 0 for all s < t, i.e., (t) is a point of Im 7.
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This means that y(t)> 0 for all > z where z is the splitting parameter of y
with respect to y. Therefore {y 0} is a separating surface with the positive side
{y>0}. n
Remark 5.3. The path 7 starts at the saddle point (0, 0, 0). One can consider

the path (t)= (0, 0,-t) defined on the interval I-0, a] which also starts at the
saddle and lies in the same invariant manifold. The same arguments show that
has the same separating surface {y 0}, but its positive side is the semispace
{y < 0}. On the other hand, the surface { y 0} is not a separating surface for the
path #(t)= (0, 0, t), [-a, 0-1, which lies in the same invariant manifold, starts
at a transversality point, and ends at the saddle (it follows from Lemma 4.1).

Using Lemma 5.1 and 5.2, the results of Section 1.10 (Proposition 7 and Prop-
osition 1.8’), and the local structure of admissible curves near a saddle point
(Proposition 2.2), we obtain the following result: all paths satisfying the condition
of Theorem 3.1 are locally rigid (the local rigidity of a path y on an interval [, fl]
means the rigidity of its restriction to any small enough interval [1, fill c [, fl-l).
In the next sections we develop the theory of separating surfaces to prove the
global rigidity.

6. Strongly separating surfaces of nonclosed paths in S(E) T(E). In this sec-
tion we give an invariant way of constructing a family of strongly separating
surfaces of any immersed simple nonclosed admissible path in S(E) T(E).
The existence of strongly separating surfaces implies the rigidity of any simple

nonclosed admissible paths 7 containing no tangency points (a part of the first
statement of Theorem 3.1.), while the method of their construction will be essen-
tially used in the proofs of the global rigidity of paths of the types (2) and (3). The
proof of Theorem 6.1 is based on the choice of special coordinates in a neigh-
bourhood in M3 of the image of 7. In particular, we prove that the Martinet
normal form (1.2) holds not only in a neighbourhood of a transversality point,
but also in a neighbourhood of the image of 7rowe believe that this result has an
independent significance.

Let 7 be an immersed simple nonclosed admissible path in the Martinet surface
S defined on an interval [, fl]. Let F be an E-curve in S defined on an open
interval and such that Im 7 C Im F. Take any line subdistribution L of E which is
transversal to S at any point of the image of 7. Denote by G(F, L) the set formed
by all leaves of L crossing the image of F.

THEOREM 6.1. (1) There exists a neighbourhood U in M3 of the image of 7 such
that G U G(F, L) is a strongly separating surface of the path 7 in the neigh-
bourhood U.

(2) Let U+ and U- be the positive and negative sides of G with respect to 7
(respectively). Assume that 7 starts at a point a and ends at a point b. Let be a

reparametrization of 7 starting at b and ending at a (i.e., 7 and have different
orientations). Then G is also a strongly separating surface of the path , but the
positive side of G with respect to is U- and the negative side is U+.
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COROLLARY. Any immersed simple nonclosed path in the Martinet surface con-
taining no tangency points is rigid.

In Section 7 we will prove the same result for all immersed admissible paths in
S(E)- T(E), including closed and self-intersecting paths. (They might exist if a
characteristic vector field has cycles; see section 2.5.) Moreover, we will show that
all immersed admissible paths in S(E) T(E) have a strongly separating surface.
The proof of Theorem 6.1 is based on the choice of a convenient coordinate

system in a neighbourhood of the image of . Namely, we prove the following.

THEOREM 6.2. Let L be a 1-dimensional subdistribution of E which is transver-
sal to S at any point of the image of an immersed simple nonclosed admissible path
in S(E)- T(E). There exists a neighbourhood U in M3 of the image of and a
coordinate system X, Y, Z in U such that

(a) the restriction of E to U is generated by the vector fields

Vl X v2 - + X2Z’ (6.1)

(b) the restriction of L to U is generated by the vector field
(c) the curve has the form X(t) O, Y(t) +_ t, Z(t) 0 up to a reparametriza-

tion preserving the orientation of .
Note that Theorem 6.2 contains the following generalization of the Martinet

theorem on local normal form near a transversality singular point:

COROLLARY. Let be a simple nonclosed admissible path in S(E) T(E). There
exists a neighbourhood U of the image of in M3 and coordinates X, Y, Z in U
such that the restriction of E to U is generated by the vector fields (6.1).

Theorem 6.1 follows easily from Theorem 6.2 and Lemma 5.1: We take a neigh-
bourhood U of Im 7 and coordinates X, Y, Z in U satisfying the requirements of
Theorem 6.2. Then G(F, L) U {p U: Z(p) 0}, and we can use Lemma 5.1.
(Remark 5.2 is important to conclude the second statement of Theorem 6.1.)
We complete this section by the proof of Theorem 6.2. We can define a charac-

teristic vector field C in a neighbourhood N in S of the image of 7. If N is small
enough, then C has no singular points in N, and since y is simple and nonclosed,
there exist coordinates Y and Z in N such that C has the form O/OY, and the
path 7 lies in the set {Z 0}. Since the 1-dimensional subdistribution L is trans-
versal to S at the points of the image of 7, it is also transversal to S at all points
of N. Therefore there exists a neighbourhood U in M3 and a function X on U
such that U c S N {X 0}, (X, Y, Z) is a coordinate system in U, and the
restriction of L to U is generated by the vector field vl O/OX. We can choose a
section v2 of the restriction of E to U, such that v2(p) O/OY for any p N and
(vl, v2) is a basis of sections of the restriction of E to U. The vector field v2
has the form A(X, Y, Z)(c3fi3S) + B(X, Y, Z)(t3/cY) + C(X, Y, Z)(O/OZ), where
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A(0, Y, Z) C(0, Y, Z) 0 and B(0, Y, Z) 1. If U is a small enough neighbour-
hood (in the direction transversal to S), then the function B does not vanish in U,
and therefore the restriction of E to U is generated by vector fields v and 2
d/dY + D(X, Y, Z)(d/dZ), where D C/B. The intersection of the Martinet sur-
face S with N is given by the equation c3D/dX 0, and we obtain that D(0, Y, Z)
(dD/dX)(O, Y, Z)= O. These relations imply that D has the form X2DI(X, Y, Z),
where D1 is a smooth function. The fact that any point of N is a transversality
singular point of E implies that the restriction of D1 to N is a nonvanishing
function, and then D1 is a nonvanishing function if the neighbourhood U is small
enough. It follows that the functions . S/qlDxl, Y, Z also form a coordinate
system in U. In this coordinate system, the basis of sections (vl, ,) has the form
(6.1), up to the notation of the coordinates. Any point of the image of ]1 has zero
X- and Z-coordinates, and since y is immersed it has the form (0, + t, 0) up to a
reparametrization preserving the orientation.

7. Pasting of separating surfaces. In this section we give a way of pasting of
separating surfaces and use this method for the globalization of local results ob-
tained in Section 5. We prove the rigidity of paths of the types (2) and (3), and the
rigidity of immersed closed and immersed self-intersecting admissible paths in the
Martinet surface.

7.1. Pasting of separating surfaces
TI-IEOREM 7.1 (on pasting of separating surfaces). Let ]1 be an E-path defined on

[, ]. Let < 2 < < . Let ]11 TIt,,,, ]I2 --]11[t2,/]" Assume that the path ]11
has a separating (resp. strongly separating) surface G1 in a neighbourhood U1 of
Im ]11, and the path ]12 has a strongly separating surface G2 in a neighbourhood U2
of Im ]12 such that G1 c (U1 c U2) G2 c (U1 c U2).

Then G G1 G2 is a separating (resp. strongly separating) surface of ]1 in
U U1 U2 with the positive side U+ U U.

Proof. The surface G divides U into two connected open sets. First we prove
that one of them is the union of U and U. Taking into account that U
G1 U c G2 (it follows easily from the fact that G1 c(U1 c U2) G2 c
(U1 U2)), it suffices to prove that U c U #- . To prove the latter fact, we
take an admissible path y defined on I-t2, tl] starting at a point of Im ]1, Cl-close
enough to Tltt2,t11, and such that Im y 4: Im ]1. By the properties of the separating
surfaces G1 and G2, we have

But

SP(, ]11) U SP(, ]12) U.

SP(, ]11)= SP(, ]12)= SP(y, ]1) #

and therefore U and U have a nonempty intersection.
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We have proved that G divides U into two connected open parts such that the
set U- u U is one of them. Now we will prove that G is a separating surface in
U with the positive side U/ U u U. Let ]7 be an E-path defined on a sub-
interval of [, fl] starting at a point of Im 7 and Cl-close to 7. Let z be the
splitting parameter of with respect to 7. If z > t2, then we conclude that

SP(y, 7) c U+ (7.1)

using just the fact that G2 is a separating surface of 72. If the interval of the
definition of is a subinterval of [, tl], then we conclude (7.1) using just the fact
that G1 is a separating surface of 71. Finally, if is defined on [-,/] where
and z < t2, then by the separating property of G1 we conclude that (t2) U,
and since ff(t2)6 U2 it follows that (t2)e U. Now we use that G2 is a strongly
separating surface of 72 and conclude (7.1).
The fact that U+ c (U1 c U2) U (U t U2) (the concordance of the posi-

tive sides) also trivially implies that any path that is defined on a subinterval I of
[, fl], Cl-close to 7It and that starts at a point of U/ stays in U/ for all I,
provided that both G1 and G2 are strongly separating surfaces. Therefore, under
this condition, G is a strongly separating surface of

7.2. The rigidity of closed and self-intersectin9 admissible paths in the Martinet

surface. The construction of Section 6 and the theorem on pasting of separating
surfaces allow us to conclude that any immersed closed or self-intersectino path in
S(E)- T(E) has a strongly separating surface (see Figure 5), and therefore it is
rigid as well as a nonclosed path.

THEOREM 7.2. Let F be any admissible periodic immersed mappin9 IR - S(E)
T(E), I c IR arbitrary compact interval of the length bi99er than or equal to the
period of F. Denote by 7 the restriction of F to I. Let L be any line subdistribution
of E transversal to the Martinet surface at any point of the image of F, and let G be
the union of all leaves of L intersectin9 the image of F. There exists a neighbour-
hood U of the image of F in M3 such that G U is a strongly separatin9 surface of
the path 7 in U.

Note that paths satisfying the requirements of Theorem 7.2 might be closed,
they might repeat their image, and they might be nonclosed but self-intersecting.
Note also that any immersed admissible path in S(E) T(E) either is simple (has
no multiple points) and nonclosed, or satisfies the requirements of Theorem 7.2.
Therefore, joining the results of Theorems 6.1 and 7.2, we obtain the following.

THEOREM 7.3. Any immersed path in S(E) T(E) has a strongly separatin9 sur-

face.
As a corollary of this theorem, we obtain a part of Theorem 3.2: any immersed

path in S(E) T(E) is rigid.
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Proof of Theorem 7.2. Assume that ]) is defined on [, fl]. It is enough to
prove the theorem for the case where fl is equal to the period of the mapping
G, i.e., for the case where ]) is a simple closed path. (The reduction to this case
follows trivially from the definition of a separating surface.) Take any two num-
bers tl and 2 such that < 2 < < fl, and denote by ])1 and ])2 the restrictions
of ]) to [, tl] and IrE, fl], respectively. The paths ])1 and ])2 satisfy the condition
of Theorem 6.1, and we can apply the first statement of this theorem: there exists
a neighbourhood U1 of the image of ])1 in M3 such that G c U1 is a strongly
separating surface of ])1 in U1, and there exists a neighbourhood U2 of the image
of ])2 in M3 such that G c U2 is a strongly separating surface of ])2 in U2. The
conditions of the theorem 7.1 on pasting of separating surfaces hold, and by this
theorem G (U1 w U2) is a strongly separating surface of ]) in U U1 w U2.

1"]

The construction of a strongly separating surface of a closed simple admissible
path ]) in S can be effectively described by the blowing-up method (transition to
the polar coordinates). Working in a small enough neighbourhood of the image of
]) in M3, we can introduce coordinates z (-e, e), R (1 e, 1 + e) and q(mod
such that the Martinet surface is given by the equation z 0, the image of ]) is
given by the equations z 0, R 1, and the distribution E is generated by vector
fields O/Oz and O/Ob + zEA(R, b)(O/OR), where A is a periodic function in b. (The
proof is similar to that of Theorem 6.2.) By Theorem 7.2, the cylinder given by the
equation R 1 is a strongly separating surface of ]) (and one can easily conclude
that R > 0 is its positive side).

7.3. The rigidity of paths of the type (2). Now we will prove that any path
in the Martinet surface of the type (2) is rigid. The proof is based on the use of
Lemma 5.2, Theorem 6.1, and Theorem 7.1.
Without loss of generality, we can assume that ]) is defined on l-0, 1], that ])(0) is

a saddle point p S, and that for all (0, 1] the point ])(t) is a transversality
singular point.

Let U1 be a neighbourhood of p and let (x, y, z) be a coordinate system in
such that p (0, 0, 0) and the restriction of E to U1 is generated by vector fields
(1.3). Take a number 6 (0, 1) such that the restriction ])1 of ]) to [0, 26] is a path
in U1 lying in one of the manifolds {x y 0} or {y z 0} (see Sections 2.2
and 1.10). By Proposition 1.8’, we can assume without loss of generality that ])1
lies in the manifold {x y 0}. By Lemma 5.2 the set G {q U:y(q)= 0} is
a separating surface of ])1 in U1. Let L1 be a line subdistribution of the restriction
of E to U1 generated by the vector field O/Ox. This subdistribution is transversal
to the Martinet surface S {y + 2xz + 3bx2z2 0} at any point of Im ]) except
the point p. Note that the union of all leaves of L1 crossing Im ]) is a subset of
Denote by ])2 the restriction of ]) to [6, 1-l. The path ])2 contains no tangeney

points and therefore there exists a neighbourhood U2 of Im ])2 and a line sub-
distribution L2 of E restricted to U2 which is transversal to the Martinet surface
at any point of the image of ])2 and such that

L2Iucu2 L1 [vv (7.2)



306 ZELENKO AND ZHITOMIRSKII

Take a curve I"2 defined on an open interval and such that Im Y2 C Im 1-"2. The
path 72 is an immersed simple nonclosed path, and by Theorem 6.1 the union
G2 of all leaves of L2 crossing Im F2 is a strongly separating surface of ]12 in U2.
(We have to shrink U2 if necessary.) It follows from (7.2) that G2 ( (U 02)
G1 c(U1 c U2). We see that the conditions of Theorem 7.1 hold, and by this
theorem G1 w G2 is a separating surface of 7 in U1 w U2. Therefore 7 is rigid.

Remark 7.1. We have proved the existence of a separating surface for any
path of the type (2) starting at a saddle point. Of course, it implies the rigidity of
all paths of the type (2). On the other hand, for paths of the type (2) ending at a
saddle point, there are no separating surfaces (it follows from Lemma 4.1).

Remark 7.2. The separating surface of 7 depends on the subdistribution L
(equal to L1 in U1 and to L2 in U2). It follows from the construction above that
the restriction of L to a neighbourhood of any transversality point q of Im 7 can
be chosen to be an arbitrarily fixed line subdistribution transversal to the Marti-
net surface. (We have to shrink U1, if necessary, so that q U1.)

7.4. The rigidity of paths of the type (3). In this section we prove that any
immersed path 7 of the type (3) is rigid. Without loss of generality, we can assume
that 7 is defined on [-1, 1], that 7(-1) and 7(1) are saddle points, and that for
all e (0, 1) the point 7(0 is a transversality singular point.

Let 71 be the restriction of 7 to [-1, 1/2]. Consider also the path 72, which is
the restriction of -7 to the same interval. (-7 is a path defined on [-1, 1] by
the relation (- 7)(t) (- t)).
Both 71 and 72 are paths of the type (2) starting at a saddle point. In Section 7.3

we showed that there are neighbourhoods U1 and U2 of the images of 71 and 72
and separating surfaces G1 c U1 and G2 U2 of 71 and 72 respectively. The
images of 71 and 72 intersect, and therefore U U1 c U2 is some neighbourhood
of 7(0).

It follows from the Remark 7.2 that we can take U1, U2, G, and G such that
G1 c W G2 W G, where W U ( U2. Let us show that

(7.3)

To prove it, consider the path 7 71t-a,a, where 6 is chosen such that 7 is
contained in W. Then G is a separating surface of 7n in W. The separating prop-
erty of G1 implies that the positive side of G with respect to 7 is the set U W.
Similarly, G is a separating surface of -7 in W, and the positive side of G with
respect to -7 is the set U W. On the other hand, we can use the second
statement of Theorem 6.1 and conclude that the positive side of G with respect to

-7 is the set U;- c l/V, and (7.3) follows.
Now we prove that any E-path defined on [-1, 1], connecting Pl and Pz and

sufficiently Ct-close to 7, lies in the image of 7 (and then the rigidity of 7 follows).
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Consider the point (0). If y(0) Im y, then from the separating property of G1
it follows that fflt-l,o c Im y, and it follows from the separating property of G2
that (-ff)lt-x.o c lm , whence Im c Im .

It remains to show that the case y(0) Im is impossible. Assume that (0)e
Im ,. Then the separating property of G implies (0) U c W, and the sepa-
rating property of G2 implies (0) U c W, which contradicts (7.3).

Remark 7.3. In this proof, we have not used that the end points of ), are
different, and therefore the proof works for saddle connections as well.
We have completed the proof of Theorems 3.1 and 3.2.
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