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On geodesic equivalence of Riemannian metrics and

sub-Riemannian metrics on distributions of corank 1

Igor Zelenko∗

Abstract

The present paper is devoted to the problem of (local) geodesic equivalence of Riemannian
metrics and sub-Riemannian metrics on generic corank 1 distributions. Using Pontryagin
Maximum Principle, we treat Riemannian and sub-Riemannian cases in an unified way and
obtain some algebraic necessary conditions for the geodesic equivalence of (sub-)Riemannian
metrics. In this way first we obtain a new elementary proof of classical Levi-Civita’s The-
orem about the classification of all Riemannian geodesically equivalent metrics in a neigh-
borhood of so-called regular (stable) point w.r.t. these metrics. Secondly we prove that
sub-Riemannian metrics on contact distributions are geodesically equivalent iff they are con-
stantly proportional. Then we describe all geodesically equivalent sub-Riemannian metrics
on quasi-contact distributions. Finally we make the classification of all pairs of geodesically
equivalent Riemannian metrics on a surface, which proportional in an isolated point. This
is the simplest case, which was not covered by Levi-Civita’s Theorem.

1 Introduction

Let us recall that two Riemannian metrics on a manifold M are called geodesically (or projec-
tive) equivalent at a point q0 ∈M , if in some neighborhood of q0 all their geodesics, considered
as unparametrized curves, coincide. The notion of geodesic equivalence can be generalized di-
rectly to sub-Riemannian metrics by replacing Riemannian geodesics by normal sub-Riemannian
geodesics:

Let D be a bracket-generating (completely nonholonomic) distribution on M . A Lipschitzian
curve ξ(t) is called admissible for the distribution D, if it is tangent to D almost everywhere,
i.e., ξ̇(t) ∈ D

(

ξ(t)
)

a.e.. A sub-Riemannian metric G on D is given by choosing an inner product

Gq(·, ·) on each subspaces D(q) for any q ∈ M smoothly w.r.t. q. Let || · ||q =
√

Gq(·, ·) be
the corresponding Euclidean norm on D(q). For any admissible curve ξ : [0, T ] 7→M its length

w.r.t. the sub-Riemannian metric G is equal to
∫ T
0 ||ξ̇(t)||ξ(t) dt. Given two points q1 and q2 one

can look for the curve of minimal length among all admissible curves connecting q1 with q2. This
problem can be obviously reformulated as a time-minimal control problem (for this one takes
into the consideration only admissible curves parametrized by the length). The sub-Riemannian
extremal trajectory w.r.t. the metric G is the projection to M of a Pontryagin extremal of this
problem (which lives in the cotangent bundle T ∗M).

In general, Pontryagin extremals can be normal or abnormal: the extremal is called ab-
normal, if the Lagrange multiplier of the functional is equal to zero, and normal otherwise.
The projection of normal (abnormal) Pontryagin extremal is called a normal (abnormal) sub-
Riemannian extremal trajectory. Any abnormal sub-Riemannian extremal trajectory, considered
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as unparametrized curves, is characterized by distribution D only, but not by the metric on it.
Normal sub-Riemannian extremals surely depend on the metric. They can be described in the
following simple way: Let h : T ∗M 7→ R satisfies

h(p, q) =
1

2

(

max{p(v) : ||v||q = 1, v ∈ D(q)}
)2

q ∈M, p ∈ T ∗
q M. (1.1)

Then the normal sub-Riemannian extremal trajectories are exactly the projections on M of the
trajectories of the Hamiltonian system λ̇ = ~h(λ), lying on the 1

2 -level set of h, i.e., on the set
{λ ∈ T ∗M : h(λ) = 1

2}.

Remark 1 The norm || · ||q on Dq induces the norm on the dual space, which will be denoted
also by || · ||q. Therefore taking the restriction p|D(q) of some covector p ∈ T ∗

q M one can rewrite
(1.1) in the following form

h(p, q) =
1

2
||p|D(q)||2q q ∈M, p ∈ T ∗

q M. (1.2)

Note that a Riemannian metric is actually the sub-Riemannian metric with D = TM and
classical Riemannian geodesics are exactly normal extremal trajectories in this situation (here
abnormal extremals do not exist). Note also that, as in Riemannian case, sufficiently small pieces
of normal sub-Riemannian extremal trajectories are length minimizers (see, for example, [5],
Appendix C there). Therefore we will call them in the sequel normal sub-Riemannian geodesics.
The following definition is a natural extension of the notion of the geodesic equivalence from
Riemannian to the general sub-Riemannian case:

Definition 1 Two sub-Riemannian metrics given on a distribution D of a manifold M are
called geodesically (or projective) equivalent at a point q0 ∈M , if in some neighborhood of q0 all
their normal geodesics, considered as unparametrized curves, coincide.

It is clear that if sub-Riemannian metrics G1 and G2 are constantly proportional, i.e., there
exists a positive constant C such that G2q = CG2q for any q, then they are geodesically equiv-
alent. The first appearing question is whether there exist constantly non-proportional geodesi-
cally equivalent sub-Riemannian metrics? The simplest example of constantly non-proportional
Riemannian metrics on a surface can be described as follows: Let P and S be a plane and a
hemisphere in R

3 such that equator of the hemisphere is parallel to the plane. Let G1 and Ḡ2

be the metrics on P and S respectively, induced from the Euclidean metric on R
3. Denote by

F : S 7→ P the stereographic projection from the center O of the hemisphere (namely, if q ∈ S
then F (q) is the only point on P lying on the straight line, which connects O and q). Then
the mapping F sends geodesics of Ḡ2 (arcs of big circles on S) to geodesics of G1 (straight
lines on P ). Therefore G1 is geodesically equivalent to G2 = (F−1)∗Ḡ2, the pull-back of Ḡ2 by
F−1, but this metric are not constantly proportional. Moreover, as E. Beltrami showed in [1],
a Riemannian metric on a surface is geodesically equivalent to the flat one iff it has a constant
curvature.

Let us introduced some notions, which are important for the considered problem. For a given
ordered pair of sub-Riemannian metrics G1, G2 and a point q one can define the following linear
operator Sq : D(q) 7→ D(q):

G2q(v1, v2) = G1q(Sqv1, v2), v1, v2 ∈ D(q).

Obviously, Sq is self-adjoint w.r.t. the Euclidean structure given by G1.
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Definition 2 The operator Sq will be called the transition operator from the metric G1 to
the metric G2 at the point q.

Let N(q) be the number of distinct eigenvalues of the operator Sq.

Definition 3 The point q0 is called regular w.r.t. the pair of sub-Riemannian metrics G1

and G2, if the function N(q) is constant in some neighborhood of q0.

Note that the regularity of the point q0 is equivalent to the fact that the set of multiplicities
of eigenvalues of the transition operator Sq is the same for all points q from some neighborhood
of q0 (in [7] regular points were called stable). By standard arguments one can show that the
function N(q) is lower semicontinuous. This together with the fact that it is integer-valued
implies the following

Proposition 1 The set of regular points w.r.t. the pair of sub-Riemannian metrics is open
and dense in M .

For Riemannian metrics on an n-dimensional manifold all possible pairs of geodesically equiv-
alent metrics in a neighborhood of a regular point w.r.t. these metrics were described already by
Levi-Civita in [4] (see Theorem 1 below and also [7]), who had extended the earlier result of Dini
for surfaces (see [2],[3], or [6]) to an arbitrary n. From this result it follows that Riemannian
metrics, for which there exists at least one non-proportional geodesically equivalent Riemannian
metric, are of the very special form.

The classification of geodesically equivalent Riemannian metrics at non-regular points (i.e.,
points, where eigenvalues of transition operator bifurcate) even on a surface was not done,
while the geodesic equivalence of proper sub-Riemannian metrics (i.e, when D 6= TM and D is
bracket-generating) was not studied before. In the present paper we treat both these problems.

In the sequel for shortness (m,n)-distribution means an m-dimensional subbundle of the
tangent bundle of an n-dimensional manifold. Our study of the geodesic equivalence of proper
sub-Riemannian metrics will be mainly concentrated on the following two cases:

1. D is the contact distribution. Namely, D is a corank 1 distribution on an odd dimensional
manifold such that if ω is a differential 1-form, which annihilates D, D(q) = {v ∈ TqM :
ωq(v) = 0}, then the restriction dω|D of the differential dω on D is a nondegenerated
2-form at any q. In this case there are no abnormal Pontryagin extremals.

2. D is the quasi-contact distribution. Namely, D is a corank 1 distribution on an even
dimensional manifold such that if ω is a differential 1-form, which annihilates D, then
the restriction dω|D of the differential dω on D has 1-dimensional kernel at any q. The
kernels of dω|D form line distribution. We will call it the abnormal line distribution of
the quasi-contact distribution D. Abnormal extremal trajectories of the sub-Riemannian
metric G on D are exactly the leaves of this distribution, parametrized by the length.

Clearly in both cases the germs of distribution D are generic germs of corank 1 distributions.
Note also that in both cases there exists only one, up to a diffeomorphism, distribution satisfying
the prescribed properties (a particular case of Darboux’s Theorem). Actually, our method
works for sub-Riemannian metrics defined on much more general distributions, for example,
on so-called step 1 bracket-generating distributions: an (m,n)-distribution D is called step 1
bracket-generating if dimDl+1 = dimDl + 1 for any 1 ≤ l ≤ n −m (here the lth power Dl of
the distribution D is defined by induction Dl = Dl−1 + [D,Dl−1]). The study of the problem
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of the geodesic equivalence for sub-Riemannian metrics on general step 1 bracket-generating
distributions will be done in our future publications.

The paper is organized as follows. In section 2 we show that the problem of geodesic equiv-
alence of sub-Riemannian metrics can be reduced to the question of the existence of an orbital
diffeomorphism between the corresponding flows of extremals. This reduction is obvious in the
Riemannian case, but in the proper sub-Riemannian case it has some additional difficulties,
especially in the presence of abnormal extremals. After this reduction we express the condition
for the existence of the orbital diffeomorphism in terms of the special frame adapted to the
pair of sub-Riemannian metrics. Further for step 1 bracket-generating distributions we obtain
a necessary condition for the geodesic equivalence in terms of divisibility of some polynomials
(on the fibers of the cotangent bundle of the ambient manifold) associated with these metrics.
We call it the first divisibility condition. It imposes rather strong restrictions on the pair of the
metrics.

In section 3 we give the coordinate-free formulation of Levi-Civita’s Theorem (Theorem 1)
and prove it in a new, rather elementary way, using the conditions for the existence of the
orbital diffeomorphism and the first divisibility condition. In section 4 for a sub-Riemannian
metric on corank 1 distribution we obtain an additional necessary condition for the geodesic
equivalence in terms of divisibility of some polynomials associated with these metrics. We
call it the second divisibility condition. Using the conditions for the existence of the orbital
diffeomorphism and the second divisibility condition we prove that sub-Riemannian metrics on
contact distributions are geodesically equivalent iff they are constantly proportional (Theorem
2) and we give the classification of all geodesically equivalent sub-Riemannian metrics on quasi-
contact distributions (Theorem 3). This classification is given in coordinate-free way and has
apparent similarities with our interpretation of Levi-Civita’s Theorem. This gives a hope for
the existence of a general classification theorem about geodesic equivalence of sub-Riemannian
metrics defined on very general class of distribution, which will contain as particular cases the
cases considered in the present paper.

Finally in section 5 for the Riemannian metrics on a surface we obtain the classification of
geodesically equivalent pairs at a non-regular point (the point of bifurcation of the eigenvalues
of the transition operator). Note that for generic pair of Riemannian metrics on a surface
the set of points of their proportionality consists of isolated points. Therefore it is natural to
consider the case when two Riemannian metrics on a surface are proportional in an isolated
point. Some results of the global topological nature (namely, about the number of the points of
proportionality for a pair of globally geodesically equivalent Riemannian metrics on a sphere)
were obtained in [6], but the local classification surprisingly was not done before. The canonical
conformal structure on a surface, associated with a Riemannian metric, plays the crucial role in
this classification. Using this conformal structure and Dini’s Theorem (Levi-Civita’s Theorem in
the case of a surface), one can associate any pair of geodesically equivalent metrics on a surface,
which are proportional in an isolated point q0, with some (multiple-valued) analytic function
in a neighborhood of q0 with a singularity at q0. The analysis of this singularity gives us the
required classification (Theorems 5 and 6).

2 Geodesic equivalence and orbital diffeomorphism of the ex-

tremal flows

2.1 Existence of the orbital diffeomorphism Let G1 and G2 be two sub-Riemannian
metrics on a distribution D of a manifold M , || · ||1q and || · ||2q be the corresponding Euclidean
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norms on D(q), h1 and h2 be the Hamiltonians, defined by (1.1), where || · ||q is replaced by
|| · ||iq, i = 1, 2. Also let H1 and H2 be the 1

2 -level sets of h1 and h2 respectively, i.e.

Hi = {λ ∈ T ∗M : hi(λ) =
1

2
}. (2.1)

Besides, for given distribution D and metric G on it denote by Jk(D,G) the space of k-jets of
all Ck curves admissible to D and parametrized by length w.r.t. the metrics G. By definition
the 1-jet J1(D,G) satisfies

J1(D,G) = {(q, v) : q ∈M,v ∈ D(q), ||v||q = 1}.

For given curve γ we will denote by j
(k)
t0 γ the k-jet of the curve γ at the point t0.

Proposition 2 If for some neighborhood U of q0 in M there exist a fiberwise diffeomorphism
Φ : H1 ∩ T ∗U 7→ H2 ∩ T ∗U and a function a : H1 7→ R such that

Φ∗
~h1(λ) = a(λ)~h2

(

Φ(λ)
)

, (2.2)

then the metrics G1 and G2 are geodesically equivalent at q0.

Proof. Indeed, Φ maps any trajectory of the system λ̇ = ~h1(λ), lying in H1 ∩ T ∗U , to
the curve, which coincides, up to reparametrization, with a trajectory of the system λ̇ = ~h2(λ).
Therefore in U any normal sub-Riemannian geodesics of G1 is, up to reparametrization, a normal
sub-Riemannian geodesics of G2. �

In the case of Riemannian metrics the relation (2.2) is also necessary for the geodesic equiv-
alence of metrics G1 and G2. Indeed, in this case there is only one geodesic passing through the

given point in the given direction, and the map P
(1)
i : Hi 7→ J1(TM,Gi) defined by

Pi(λ)
def
= j10π(et

~hi) =
(

π(λ), π∗
(

~hi(λ)
)

)

, i = 1, 2, (2.3)

is a diffeomorphism (here we denote by π : T ∗M 7→M the canonical projection and by et
~hi the

flow generated by vector field ~hi, i = 1, 2). So, directly by definition, if the metrics G1 and G2

are geodesically equivalent at q0, then there is a neighborhood U of q0 such that the following
diffeomorphism

Φ(λ) =
(

P 1
2

)−1

(

1

||P 1
1 (λ)||2q

P 1
1 (λ)

)

, q = π(λ), (2.4)

is fiberwise, maps H1 ∩ T ∗U to H2 ∩ T ∗U and satisfies (2.2) on H1 ∩ T ∗U .

Definition 4 A fiberwise diffeomorphism Φ defined on a nonempty open set B of H1 such
that Φ(B) ⊂ H2 is called the orbital diffeomorphism of the extremal flows of the sub-Riemannian
metrics G1 and G2 on B, if it satisfies (2.2) for any λ ∈ B.

Let us study the question, whether the existence of the orbital diffeomorphism is necessary
for the geodesic equivalence of sub-Riemannian metrics. In the case of a proper sub-Riemannian
metric (i.e., D 6= TM , D is bracket-generating) an entire family of normal sub-Riemannian
geodesics passes in general through the given point in the given direction. So, in order to
distinguish different normal geodesics, passing through a point, we need jets of higher order.
Besides, the presence of the abnormal extremal trajectories causes to addition difficulties, as
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shown below. By analogy with (2.3) let us define the following mapping P
(k)
i : Hi 7→ Jk(D,Gi),

i = 1, 2:

P
(k)
i (λ)

def
= jk0π(et

~h) (2.5)

Then one can check without difficulties that:
a) if D is contact then the mapping P

(2)
i establishes the diffeomorphism between Hi and its

image;
b) if D is quasi-contact, C is the abnormal line distribution of D, and the set Si ⊂ Hi is

defined by
Si = {λ ∈ Hi : P 1

i (λ) ∈ C}, (2.6)

then the restriction of the mapping P
(2)
i on Hiq\Si establishes the diffeomorphism between

Hiq\Si and its image, while the restriction of P
(2)
i on Si is constant on each fiber.

Now denote by Ωq(D,Gi) the set of all C∞ admissible curves, starting at q and parametrized
by length w.r.t. the metric Gi and let Jk

q (D,Gi) be the space of k-jet of these curves at 0.
Consider the mapping Iq : Ωq(D,G1) 7→ Ωq(D,G2) which sends a curve γ to its reparametriza-

tion (w.r.t. the length of G2). Obviously , this mapping induces the diffeomorphisms I
(k)
q :

Jk
q (D,G1) 7→ Jk

q (D,G2). Collecting all such diffeomorphisms for any q we obtain a diffeomor-

phism I(k) : Jk(D,G1) 7→ Jk(D,G2). Then similarly to (2.4) we obtain that if the distribution
D is one of the two listed in Introduction, and the sub-Riemannian metrics G1 and G2, defined
on D, are geodesically equivalent at q0, then there exist a neighborhood U of q0 such that the
following mapping

Φ(λ) =
(

P
(2)
2

)−1 ◦ I(2) ◦ P (2)
1 (λ), (2.7)

is well defined on the set B, where B = H1 ∩ T ∗U in contact case and B = (H1 ∩ T ∗U)\S1 in
quasi-contact (here S1 is as in (2.6)). Moreover, such Φ is the orbital diffeomorphism on the set
B w.r.t. the metrics G1 and G2. We have proved the following

Proposition 3 If G1 and G2 are Riemannian metric or sub-Riemannian metrics defined
on contact or quasi-contact distributions and if they are geodesically equivalent at some point
q0, then for some neighborhood U of q0 there exists the orbital diffeomorphism of the extremal
flows of the metrics G1 and G2 on some nonempty open set B in H1 ∩ T ∗U , π(B) = U . In the
Riemannian and contact case one can take B = H1 ∩ T ∗U , while in quasi-contact case one can
take B = (H1 ∩ T ∗U)\S1, where S1 is as in (2.6).

Actually, there is an analogue of the previous proposition for sub-Riemannian metrics defined
on much more wide class of distributions. To formulate it let us introduce some notations.
Denote by Aq0

(D) the set of all points q ∈ M which can be connected with q0 by abnormal
extremal trajectory of the distribution D. For example, in Riemannian and contact case Aq0

(D)
is empty; in quasi-contact case Aq0

(D) is the set Lq0
\{q0}, where Lq0

is the leaf of the abnormal
line distribution, passing through q0.

Proposition 4 Suppose that the sub-Riemannian metrics G1 and G2, defined on the bracket-
generating distribution D, are geodesically equivalent at the point q0 and for any neighborhood
V of q0 the set V \Aq0

(D) has positive Lebesgue measure. Then for some neighborhood U of q0
there exists the orbital diffeomorphism of the extremal flows of the metrics G1 and G2 on some
open set B in H1 ∩ T ∗U , π(B) = U .

Remark 2 Actually in the previous proposition one can replace the set Aq0
(D) by the set of

all points q ∈M which can be connected by abnormal extremal trajectory, having minimal length
w.r.t. the metric G1 (or G2) among all admissible trajectories with endpoints q0 and q.
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Since in the present paper we solve completely the problem of geodesic equivalence only in
the cases, considered in Proposition 3, we postpone the proof of Proposition 4 and the statement
in Remark 2 to the future paper.

2.2 The orbital diffeomorphism in terms of the adapted frame to the pair of
metrics. Suppose that D is an (m,n)-distribution on a manifold M . Let q0 be a regular point
w.r.t. the metric G1 and G2 (see Definition 3). It is simple to show that the regularity of
the point q0 is equivalent to the fact that the set of the multiplicities of the eigenvalues of the
transition operator Sq is the same for all points q from some neighborhood of q0. Therefore
in some neighborhood U of q0 one can choose the basis (X1, . . . ,Xm) of the distribution D
orthonormal w.r.t. the metric G1 such that each Xi(q) is eigenvector of the transition operator
Sq, q ∈ V . Such basis of D will be called the adapted basis to the ordered pair of metrics
(G1, G2) on a set U . A frame (X1, . . . ,Xn) will be called the adapted frame to the ordered pair
of sub-Riemannian metrics (G1, G2) on a set U , if the tuple

(

X1, . . . ,Xm) is the adapted basis
of D w.r.t. (G1, G2) on U .

Let us express the relation (2.2) for the orbital diffeomorphism in terms of some adapted
frame (X1, . . . ,Xn) . Let ui : T ∗M 7→ R be the ”quasi-impulse” of the vector field Xi,

ui(p, q) = p
(

Xi(q)
)

, q ∈ U, p ∈ T ∗U. (2.8)

For given diffeomorphism Φ defined on an open set of T ∗M denote by

Φi = ui ◦ Φ, 1 ≤ i ≤ n. (2.9)

Suppose also that for any i, 1 ≤ i ≤ m, the eigenvalue of the transition operator Sq, correspond-
ing to the eigenvector Xi(q), is equal to α2

i (q).

Lemma 1 If Φ is the orbital diffeomorphism of the extremal flows of the metrics G1 and
G2 on an open set B ⊂ H1 ∩ T ∗U , then the functions Φi with 1 ≤ i ≤ m satisfy

Φi =
α2

i ui
√

∑m
k=1 α

2
ku

2
k

, 1 ≤ i ≤ m. (2.10)

Proof. Since by construction the tuple (X1, . . . ,Xm) constitute an orthonormal basis of the
distribution D w.r.t. the metric G1, the Hamiltonian h1 satisfies h1 = 1

2

∑m
i=1 u

2
i , and

~h1 =

m
∑

i=1

ui~ui, π∗~h1 =

m
∑

i=1

uiXi, H1 =
{

λ ∈ T ∗U :

m
∑

i=1

u2
i = 1

}

(2.11)

(here π : T ∗M 7→M is the canonical projection). Let X̄i be

X̄i =
1

αi
Xi, 1 ≤ i ≤ m, (2.12)

and ūi(p, q) = p
(

X̄i(q)
)

be the corresponding quasi-impulses. Then

ūi =
ui

αi
, 1 ≤ i ≤ m, (2.13)

Note that by construction (X̄1, . . . , X̄n) is the orthonormal basis of D w.r.t. the metric G2.
Hence, similarly to (2.11), we have ~h2 =

∑m
i=1 ūi~̄ui, which together with (2.12) and (2.13)

implies that

π∗~h2 =

m
∑

i=1

ui

α2
i

Xi, H2 =
{

λ ∈ T ∗U :

m
∑

i=1

ū2
i = 1

}

=
{

λ ∈ T ∗U :

m
∑

i=1

u2
i

α2
i

= 1
}

(2.14)
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Suppose that Φ is the orbital diffeomorphism on some set B, satisfying (2.2) for some function
a. Then by definition Φ(λ) ∈ H2 for any λ ∈ B. This together with (2.9) and (2.14) implies
that

m
∑

i=1

Φ2
i

α2
i

= 1. (2.15)

Further from the fact that Φ is fiberwise and (2.11) it follows that

(π∗ ◦ Φ∗)~h1(λ) = π∗~h1(λ) =

m
∑

i=1

uiXi.

On the other hand, (2.9) and (2.14) imply

π∗~h2

(

Φ(λ)
)

=
m
∑

i=1

Φi

α2
i

Xi.

From the last two relations and (2.2) it follows that

aΦi = α2
i ui, 1 ≤ i ≤ m

From this and (2.15) it follows easily that

a =

√

√

√

√

m
∑

k=1

α2
ku

2
k, (2.16)

which implies (2.10). �

Now we will find the relation for the remaining components Φi, m + 1 ≤ i ≤ n, of Φ. Let
ckji be the structural functions of the adapted frame (X1, . . . ,Xn), i.e., the function, satisfying

[Xi,Xj ] =
∑

ckjiXk. Let the vector fields Xi, 1 ≤ i ≤ m, satisfy (2.12) and set

X̄i = Xi, m+ 1 ≤ i ≤ n. (2.17)

Note that by construction (X̄1, . . . , X̄n) is the adapted frame w.r.t. the ordered pair (G2, G1).
Let c̄kji be the structural functions of the frame (X̄1, . . . , X̄n). The following functions will be
very useful in the sequel together with function a, defined by (2.16):

Rj
def
=

1

2
~h1(α

2
j )uj + α2

j
~h1(uj) −

1

2
α2

juj

~h1(a
2)

a2
−

∑

1≤i,k≤m

c̄kjiαiαjαkuiuk, (2.18)

Qjk
def
=

m
∑

i=1

c̄kjiαiui (2.19)

Lemma 2 A map Φ is the orbital diffeomorphism on a set B of the extremal flows of the
metrics G1 and G2 iff on B the functions Φk with m+ 1 ≤ k ≤ n satisfy the following relations:

∀1 ≤ j ≤ m : αj

n
∑

k=m+1

QjkΦk =
Rj

a
(2.20)

∀m+ 1 ≤ s ≤ n : ~h1(Φs) −
n
∑

k=m+1

QskΦk =
1

a

m
∑

k=1

Qskαkuk. (2.21)
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Proof. In the sequel we set

∀m+ 1 ≤ n : αi ≡ 1. (2.22)

Denote by Yi the vector field on H1, which is the lift of the vector field Xi (i.e., π∗Yi = Xi),
and duj(Yi) = 0 ∀1 ≤ j ≤ n (i.e., Yj is horizontal field of the connection on T ∗M defined by
distribution, satisfying du1 = . . . = dun = 0). Similarly, let Ȳi be the vector field on H2, which is
the lift of X̄i and dūj(Yi) = 0 for all 1 ≤ j ≤ n. Note also that the tuple (u1, . . . , un) defines the
coordinates on each fiber T ∗

q M of T ∗M . So, one can define the vector fields ∂ui
, 1 ≤ i ≤ n, as

follows: ∂ui
is vertical (i.e., tangent to the fibers of T ∗M) and duj(∂ui) = δij for all j = 1, . . . n,

where δij is the Kronecker symbol. In the same way one can define the fields ∂ūi
. With this

notations, using (2.12) and (2.13), ∀1 ≤ i ≤ n one can easily obtain the following relation :

∂ūi
= αi∂ui

, Ȳi =
1

αi



Yi +

m
∑

j=1

Xj(αi)

αi
uj∂uj



 (2.23)

Besides, by standard calculations, we have

~h1 =
m
∑

i=1

ui~ui =
m
∑

i=1

uiYi +
m
∑

i=1

n
∑

j,k=1

ckjiuiuk∂uj
, (2.24)

~h2 =
m
∑

i=1

ūi~̄ui =
m
∑

i=1

ūiȲi +
m
∑

i=1

m
∑

j,k=n

c̄kjiūiūk∂ūj
. (2.25)

Substituting (2.13) and (2.23) into (2.25), we obtain

~h2 =

m
∑

i=1

ui

α2
i

Yi +

m
∑

i,j=1

Xi(αj)

α2
iαj

uiuj∂uj
+

m
∑

i=1

n
∑

j,k=1

c̄kjiαj

αiαk
uiuk∂uj

. (2.26)

This together with (2.10) implies easily that

~h2

(

Φ(λ)
)

= a−1
m
∑

i=1

uiYi + a−2
m
∑

j=1

(1

2
~h1(α

2
j )uj +

m
∑

i,k=1

c̄kjiαiαjαkuiuk

)

∂uj
+

a−1
m
∑

j=1

n
∑

k=m+1

m
∑

i=1

c̄kjiαiαjuiΦk∂uj
+

n
∑

s=m+1

m
∑

i=1

(

a−2
m
∑

k=1

c̄ksiαiαkuiuk+ (2.27)

a−1
n
∑

k=m+1

c̄ksiαiuiΦk

)

∂us , (2.28)

where a is as in (2.16). On the other hand, from the fact that Φ is fiberwise and relation (2.10)
it follows that

Φ∗
~h1(λ) =

m
∑

i=1

uiYi +

m
∑

j=1

~h





α2
juj

√

∑m
l=1 α

2
l u

2
l



 ∂uj
+

n
∑

j=m+1

~h(Φj)∂uj
. (2.29)

Using relations (2.27) and (2.29), it is not hard to check by direct calculations that (2.2) holds
iff both (2.20) and (2.21) hold, which concludes the proof of the Lemma. �
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2.3 The first divisibility condition. Let I1 : D(q)∗ 7→ D(q) be the canonical isomorphism
w.r.t. the inner product G1q(·, ·), namely, ℓ(·) = G1q(I1(ℓ), ·) ∀ℓ ∈ D(q)∗. Define the following
function P : T ∗M 7→ R:

P(p, q) =
(

||I1(p|D(q))||2q

)2
, q ∈M,p ∈ T ∗

q M (2.30)

(here || · ||2q is the Euclidean norm on D(q) corresponding to the inner product G2q(·, ·), p|D(q)

is the restriction of covector p ∈ T ∗
q M on the subspace D(q)). Obviously, the restriction of P on

each fiber T ∗
q M is a degree 2 homogeneous polynomial, while the restriction of ~h1(P) on each

fiber T ∗
q M is a degree 3 polynomial. Besides, in a neighborhood of the regular point

P = a2 =

m
∑

i=1

α2
i u

2
i , (2.31)

where (u1, . . . , um) are quasi-impulses of the vectors of the adapted basis (X1, . . . Xm) to the
order pair (G1, G2) and α2

i are eigenvalues of the transition operator Sq, corresponding to the
eigenvectors Xi.

Definition 5 We will say that the ordered pair (G1, G2) of sub-Riemannian metrics on the
distribution D satisfies the first divisibility condition on a set U , if the polynomial ~h1(P)|T ∗

q M is
divided by the polynomial P|T ∗

q M for any q ∈ U .

Proposition 5 Let D be an (m,n)-distribution on a manifold M such that

∀1 ≤ s ≤ n−m+ 1, dimDs = m+ s− 1. (2.32)

Suppose also that for given two sub-Riemannian metrics G1 and G2 on D and for some open
set U of M there exists an orbital diffeomorphism of the extremal flows of these metrics in some
open set B in H1∩T ∗U , π(B) = U . Then the pair (G1, G2) satisfies the first divisibility condition
on U .

Proof. Since the set of regular points is dense ( Proposition 1) it is sufficient to prove the
first divisibility condition for a regular point q0 w.r.t. the pair (G1, G2). Therefore in order to
obtain the first divisibility condition we can use Lemmas 1 and 2. Note also that by (2.18) the
function Rj has the following form on each fiber:

Rj = −1

2
α2

juj

~h1(P)

P + polynomial (2.33)

First suppose that D = TM (in this case the assumption (2.32) holds automatically). Then
the identity (2.20) is equivalent to the identity Rj ≡ 0, 1 ≤ j ≤ n, which holds on open set B
in H1 ∩ T ∗U with π(B) = U and therefore on the whole T ∗U . Hence from (2.33) it follows that

uj
h1(P)
P

, has to be a polynomial, which implies easily that the polynomial P has to divide the

polynomial ~h1(P), i.e., the first divisibility condition holds.

Now consider the case D 6= TM . By assumption (2.32), we can complete the adapted basis
(X1, . . . ,Xm) to the adapted frame such that

∀m+ 1 ≤ s ≤ n Xs ∈ Ds−m+1 (2.34)

10



Then D2 = span(X1, . . . Xm+1), which implies that there exist indices ī, j̄, 1 ≤ ī, j̄ ≤ m, such
that c̄m+1

j̄ ī
(q0) 6= 0, while c̄kij = 0 for all 1 ≤ i, j ≤ m and k > m+ 1. In other words,

∀k, j : k > m+ 1, 1 ≤ j ≤ m Qjk ≡ 0 (2.35)

∃j̄ : 1 ≤ j̄ ≤ m, Qj̄m+1 6≡ 0 (2.36)

(see (2.19) for the definition of the functions Qjk). Then from (2.20) it follows that

Φm+1 =
Rj̄

αj̄Qj̄m+1

√
P
. (2.37)

Using (2.33), we obtain

Φm+1 = −1

2
αj̄uj̄

~h1(P)

Qj̄m+1P3/2
+

1

αj̄Qj̄m+1

√
P

polynomial (2.38)

on each set B ∩ T ∗
q M , q ∈ U .

Further, from assumption (2.32) it follows that c̄k+1
si = 0 for any k, s, i such that m < s < k

and 1 ≤ i ≤ m. On the other hand, there exist ī, 1 ≤ ī ≤ m, such that c̄s+1
s̄i

6= 0. In other words,

∀k, s : m < s < k Qs k+1 ≡ 0 (2.39)

∀s : m < s < n− 1 Qs s+1 6≡ 0. (2.40)

Hence by (2.21), applied for s = m+ l − 1 with 2 ≤ l ≤ n−m, one has

Φm+l = Q−1
m+l−1 m+l

(

~h1(Φm+l−1) −
m+l−1
∑

k=m+1

Qm+l−1kΦk − P−1/2
m
∑

k=1

Qm+l−1,kαkuk

)

. (2.41)

Then by induction from (2.38) and (2.41) it is not difficult to get the following relation for any
2 ≤ l ≤ m− n

Φm+l =
(−1)l(2l − 1)!!αj̄uj̄

(

~h1(P)
)l

2lQj̄ m+1P l+1/2
∏l−1

i=1Qm+i m+i+1

+
polynomial

Ql
j̄ m+1

P l−1/2
∏l−1

i=1Q
l−i
m+i m+i+1

(2.42)

on each B ∩ T ∗
q M , q ∈ U . Substituting the expression for Φm+l from (2.42) to identity (2.21)

with s = n one can obtain without difficulties that

uj̄

(

~h1(P)
)n−m+1

Qj̄ m+1Pn−m+3/2
∏n−m−1

i=1 Qm+i m+i+1

=
polynomial

Qn−m+1
j̄ m+1

Pn−m+1/2
∏n−m−1

i=1 Qn−m−i+1
m+i m+i+1

(2.43)

or, equivalently

uj̄Q
n−m
j̄ m+1

(
∏n−m−1

i=1 Qn−m−i
m+i m+i+1

)(

~h1(P)
)n−m+1

P = polynomial. (2.44)

on each set B ∩ T ∗
q M , q ∈ U . Note that the left-hand side of (2.44) is rational function. Hence

from (2.44) it has to be polynomial. Note also that P is positive definite quadratic form (see
(2.31)), while the functions Qjk are linear (with real coefficients) on each fiber. Therefore from

(2.44) it follows easily that the polynomial P has to divide the polynomial ~h1(P), i.e., the first
divisibility condition holds. The proof of the proposition is concluded. �.

Note that if D is contact, quasi-contact, or D = TM , then the assumption (2.32) of the
previous proposition holds. So, as a direct consequence of Proposition 3 and the previous
proposition, we have the following
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Corollary 1 Suppose that two metrics G1 and G2 defined on the distribution D are geodesi-
cally equivalent at the point q0. Assume also that the distribution D satisfies one of the two
following conditions:

1. D = TM (the Riemannian case);

2. D is corank 1 contact or quasi-contact distribution;

Then the pair (G1, G2) satisfies the first divisibility condition on U .

So, in the cases under consideration the first divisibility condition is necessary for the geodesic
equivalence. In the next proposition we collect all information from the first divisibility condition,
which will be used in the sequel. It shows that the first divisibility condition imposes rather
strong restrictions on the pair of the metrics.

Proposition 6 Suppose that the metrics G1 and G2, defined on the distribution D, satisfy
the first divisibility condition on some set U . If (X1, . . . Xm) is a basis of D adapted to the order
pair (G1, G2), and the transition operator Sq has the form Sq = diag (α2

1(q), . . . , α
2
m(q)) in this

basis (αi > 0), then the following relations hold

[Xi,Xj ](q) /∈ D(q) ⇒ αi(q) = αj(q); (2.45)

Xi

(

α2
j

α2
i

)

= 2cjji

(

1 −
α2

j

α2
i

)

; (2.46)

Xi

(

α2
j

αi

)

= 0, αi 6= αj (2.47)

Xi

(

αj

αk

)

= 0, αj 6= αi, αk 6= αi; (2.48)

(α2
j − α2

i )c
k
ji + (α2

j − α2
k)c

i
jk + (α2

i − α2
k)c

j
ik = 0, i, j, k are pairwise distinct. (2.49)

(in all relations above 1 ≤ i, j, k ≤ m).

Proof. As before let us complete the adapted basis (X1, . . . Xm) of D somehow to the local
frame. From (2.24) and (2.31) by direct calculation one has

~h1(P) =
m
∑

i,j=1

Xi(α
2
j )uiu

2
j + 2

m
∑

i,j=1

n
∑

k=1

ckjiα
2
juiujuk (2.50)

On the other hand by the first divisibility condition there exist functions pi(q), 1 ≤ i ≤ n, such
that

~h1(P) =
(

n
∑

i=1

piui

)(

m
∑

j=1

α2
ju

2
j

)

. (2.51)

Relation (2.49) follows immediately from comparing the coefficients of uiujuk in the right-
hand sides of (2.50) and (2.51), where i, j, k are pairwise distinct and 1 ≤ i, j, k ≤ m.

Further, comparing the coefficient of uiujuk in the right-hand side of (2.50)and (2.51), where
1 ≤ i ≤ j ≤ m and k > m, we have

ckji(α
2
i − α2

j ) = 0 (2.52)
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Therefore, if [Xi,Xj ](q) /∈ D(q), then there exists k > m such that ckji(q) 6= 0, which implies
that αi(q) = αj(q). Relation (2.45) is proved.

Further, comparing coefficients of u3
i in the right-hand sides of (2.50) and (2.51) we obtain

that

pi =
Xi(α

2
i )

α2
i

, (2.53)

while comparing coefficients of uiu
2
j with i 6= j and using (2.53) one obtains easily that

α2
iXi(α

2
j ) − α2

jXi(α
2
i ) = 2cjji(α

2
i − α2

j )α
2
i . (2.54)

The last equation implies (2.46).
In order to prove (2.47) note that we can obtain one more relation in addition to (2.46),

starting with the metric G2 as the original one and using transition from the metric G2 to the
metric G1. Namely, if X̄i is as in (2.12) then by analogy with (2.54) we have

ᾱ2
i X̄i(ᾱ

2
j ) − ᾱ2

j X̄i(ᾱ
2
i ) = 2c̄jji(ᾱ

2
i − ᾱ2

j )ᾱ
2
i . (2.55)

Obviously, ᾱi = 1
αi

. Also, by (2.12) one get easily that

c̄jji =
cjji
αi

− Xi(αj)

αiαj
. (2.56)

Substituting the last two relations and (2.12) into (2.55) it is not difficult to get the following

α2
iXi(α

2
j ) − α2

jXi(α
2
i ) = 2αj

(

(αjc
j
ji −Xi(αj)

)

(α2
i − α2

j ) (2.57)

Then combining (2.54) with (2.57) and using the fact that αi 6= αj one get

cjji =
1

2

Xi(α
2
j )

α2
j − α2

i

(2.58)

Substituting the last relation again in (2.54) we have

2α2
iXi(α

2
j ) − α2

jXi(α
2
i ) = 0,

which is equivalent to (2.47). Relation (2.48) follows immediately from (2.47).

Corollary 2 If D is a bracket-generating (2, n)-distribution, n > 2, and the metrics G1

and G2, defined on D, satisfy the first divisibility condition, then they are proportional, namely
G2q = α(q)G1q .

Proof. Since D is bracket-generating, the set V1 of points q with

dimD2(q) = 3 (2.59)

is open and dense. By Proposition 1 the intersection V2 of this set with the set of all regular
points w.r.t. the metrics G1 and G2 is also open dense. Therefore it is sufficient to proof the
corollary for the points of V2. From regularity it follows the existence of the adapted frame
(X1,X2). So, we can apply the previous proposition. By (2.59), [X1,X2] 6∈ D. Hence from
(2.45) it follows that α1 ≡ α2, which completes the proof of the corollary. �

Suppose that D is a step 1 bracket-generating (2, n)-distribution (dimDl+1 = dimDl +1 for
any 1 ≤ l ≤ n −m). It can be shown easily that D satisfy the assumptions of Proposition 4.
Therefore by Propositions 4, 5, and Corollary 2 we have the following
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Proposition 7 Suppose that two sub-Riemannian metrics G1 and G2 are defined on a step
1 bracket-generating (2, n)-distribution, where n > 2. If they are geodesically equivalent at some
point q0, then they are proportional, namely G2q = α(q)G1q in some neighborhood of q0.

Our conjecture is that the factor α(q) in the previous propoposition has to be constant, but
we can prove it still only in the case n = 3 (see Corollary 5 below). We finish this section with
the following useful lemma

Lemma 3 Suppose that the metrics G1 and G2, defined on an (m,n)-distribution D, satisfy
the first divisibility condition at some neighborhood U of a regular point q0. If (X1, . . . Xm) is
a basis of D adapted to the order pair (G1, G2), and the transition operator Sq has the form
Sq = diag (α2

1(q), . . . , α
2
m(q)) in this basis (αi > 0), then the functions Rj , 1 ≤ j ≤ m, defined

by (2.18), can be written in the following form

Rj =
m
∑

i=1

(1 − δji)
(

(α2
j − α2

i )c
i
ji −

Xj(α
2
i )

2

)

u2
i +

m
∑

i=1

(1 − δji)
α2

i

2α2
j

Xi

(α4
j

α2
i

)

uiuj +

m
∑

i=1

m
∑

k=1

(1 − δik)(α
2
j − α2

k)c
k
jiuiuk + α2

j

m
∑

i=1

n
∑

k=m+1

ckjiuiuk. (2.60)

(here δij is the Kronecker symbol).

The relation can be obtain without difficulties by substitution of (2.53), (2.56) and the following
obvious identity

c̄ki,j = cki,j
αk

αiαj
i, j, k are pairwise distinct (2.61)

into (2.18).

3 The case of Riemannian metrics near regular point

In the present section, using the technique developed above, we give a new proof of classical
Levi-Civita’s Theorem about the classification of all Riemannian geodesically equivalent metrics
in a neighborhood of the regular points w.r.t. these metrics (see [4], [7]). This proof is rather
elementary and transparent from the geometrical point of view. Some crucial ideas of this proof
will be used in the next section for obtaining the corresponding classification for sub-Riemannian
geodesically equivalent metrics on quasi-contact distributions.

Here we prefer the coordinate-free formulation of Levi-Civita’s Theorem, which in our opin-
ion clarifies the statement of it. But before let us introduce some notations and prove some
preparatory lemmas.

Let G1 and G2 be Riemannian metrics on an n-dimensional manifold M . Let q0 be a regular
point w.r.t. these metrics. Suppose that (X1, . . . Xn) is a frame adapted to the order pair
(G1, G2) in some neighborhood of q0, and the transition operator Sq from the metric G1 to the
metric G2 has the form Sq = diag (α2

1(q), . . . , α
2
n(q)) in this basis (αi > 0).

Let Rj , 1 ≤ j ≤ n, be as in (2.18). Propositions 2, 3 and Lemma 2 imply the following

Lemma 4 Two Riemannian metrics G1 and G2 are geodesically equivalent at a regular point
q0 if and only if there exist some neighborhood U of q0 such that the following identities hold on
T ∗U

∀j : 1 ≤ j ≤ n Rj ≡ 0. (3.1)
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Further, let {λ1, . . . , λN} be the set of all distinct eigenvalues of Sq, λs > 0 (from the
regularity the number of these eigenvalues is constant for all q from some neighborhood of q0).
Denote by

Is = {i : α2
i = λs} 1 ≤ s ≤ N (3.2)

Denote also by Ds the following rank |Is|-distribution

Ds = span{Xi}i∈Is , 1 ≤ s ≤ N (3.3)

Lemma 5 If two Riemannian metrics G1 and G2 are geodesically equivalent at a regular
point q0, then the distribution Ds is integrable in a neighborhood of q0.

Proof. By Lemma 4 identities (3.1) hold. Taking the coefficient of uiuk from (2.60), by
(3.1) one has

(α2
j − α2

k)c
k
ji + (α2

j − α2
i )c

i
jk = 0, i, j, k are pairwise distinct. (3.4)

If αi = αj and αi 6= αk, then from the last relation (α2
j −α2

k)c
k
ji = 0, which implies that ckji = 0.

In other words, if i, j ∈ Is, then [Xi,Xj ] ∈ Ds. So, Ds is an integrable distribution. �

Lemma 6 If two Riemannian metrics G1 and G2 are geodesically equivalent at a regular
point q0, then the distribution

Ds,l
def
= span

(

Ds,Dl

)

= span
{

Xi

}

i∈(Is∪Il)
,

is integrable in a neighborhood of q0 for all s, l , 1 ≤ s 6= l ≤ N .

Proof. By the previous lemma it is sufficient to prove that for any three indices i, j, k with
pairwise distinct αi, αj , and αk we have ckji 6= 0. Making the corresponding permutation of
indices in (3.4), we obtain one more relation

−(α2
j − α2

k)c
k
ji + (α2

i − α2
j )c

j
ik = 0, i, j, k are pairwise distinct. (3.5)

Combining (3.4), (3.5), and (2.49), we obtain the system of three linear equations w.r.t. ckji, c
i
jk,

and cjik with the determinant equal to 2(α2
i −α2

j)(α
2
i −α2

k)(α
2
k −α2

j ), which implies that ckji = 0.
�

From the previous lemma by standard arguments one has the following

Corollary 3 If two Riemannian metrics G1 and G2 are geodesically equivalent at a regular
point q0, then in some neighborhood U of the point q0 there exist coordinates (x1, . . . xn) such
that

∀s : 1 ≤ s ≤ p Ds = {dxi = 0}i6∈Is
. (3.6)

In other words, in this coordinates the leaves of the integrable distribution Ds are |Is|-dimensional
linear subspaces, parallel to the coordinate {xi}i∈Is-subspace.

For any s, 1 ≤ s ≤ N , denote by Fs the foliation of the integral manifolds of the distribution
Ds. Let Fs(q0) be the leaf of Fs, passing through the point q0. Also, let U be the neighborhood
of q0 from Corollary 3. Then for any s, 1 ≤ s ≤ N , one can define a special map prs : U 7→ Fs(q0)
in the following way: the point prs(q) is the point of intersection of Fs(q0) with the integral
manifold of the distribution span{Dl : 1 ≤ l ≤ N, l 6= s}, passing through q. In the coordinates
of Corollary 3 with q0 = (0, . . . , 0) the map prs is the projection on the coordinate {xi}i∈Is-
subspace (which preserves all coordinates xi, i ∈ Is). Now we are ready to formulate Levi-
Civita’s Theorem:
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Theorem 1 (Levi-Civita) Two Riemannian metrics G1 and G2 are geodesically equivalent
at a point q0 if and only if for any s, 1 ≤ s ≤ N , on a manifold Fs(q0) there exist a Riemannian
metric gs and a positive function βs, which is constant if dim Fs > 1, such that βs(q0) 6= βl(q0)
for all s 6= l and in some neighborhood of q0 the metrics G1 and G2 have the following form

G1 =
N
∑

s=1

γs(prs)
∗gs, (3.7)

G2 =

N
∑

s=1

λsγs(prs)
∗gs, (3.8)

where

λs = (βs ◦ prs)
N
∏

l=1

(βl ◦ prl), (3.9)

γs =
∏

l 6=s

∣

∣

∣

1

(βl ◦ prl)
− 1

(βs ◦ prs)
∣

∣

∣
. (3.10)

Proof. We start with the proof of the ”only if” part. Below we work in the coordinate
neighborhood U of Corollary 3. First let us prove the following

Lemma 7 For any s, 1 ≤ s ≤ N , there exist a metric gs on Fs and some function γs such
that (3.7) holds.

Proof. Since by construction for any s1 6= s2 the distributions Ds1
and Ds2

are orthogonal
w.r.t. the metric G1, the relation (3.7) is equivalent to the fact that for any s, 1 ≤ s ≤ N , there
exists the metric gs on Fs and the function γs such that

∀Y ∈ Ds(q) G1q = γsgsprsq

(

(d(prs)qY
)

(3.11)

If dimFs = 1 (or, equivalently, |Is| = 1), then relation (3.11) holds automatically for some gs

on Fs and some function γs, because all quadratic forms of one variable are proportional. Let

us prove (3.11) in the general case. First, as gs we can take the restriction G1

∣

∣

∣

Fs(q0)
of G1 to

Fs(q0), i.e.,

gs = G1

∣

∣

∣

Fs(q0)
(3.12)

Fix some point q1 ∈ Fs(q0) and denote by Gs(q1) the integral manifold of the distribution
span{Dl : 1 ≤ l ≤ N, l 6= s}, passing through q1. Fix some vector v ∈ Ds(q1) such that
gs(v, v) = 1. By construction for any q ∈ Gs(q1) there exist a unique vector Yv(q) ∈ Ds(q) such
that d(prs)qYv(q) = v. Denote by εv the following function on Gs(q1)

εv(q)
def
= G1q

(

Yv(q), Yv(q)
)

, q ∈ Gs(q1) (3.13)

It is clear that the relation (3.11) is equivalent to the fact that the function εv does not depend
on the choice of the unit vector v from Ds(q1). Then in order to obtain (3.11) on Gs(q1), we will
put

γs = εv. (3.14)
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Let us prove that the function εv does not depend on unit vector v from Ds(q1). Fix some l 6= s
and some vector field Z ∈ Dl, which is unit w.r.t. the metric G1, i.e. G1(Z,Z) = 1. For some
j ∈ Is, i ∈ Il take an adapted frame (X1, . . . ,Xn) such that

Xj(q) = ε−1/2
v Yv(q), ∀q ∈ Gs(q1), (3.15)

Xi = Z. (3.16)

First by construction one has

cjji = −1

2

Xi(εv)

εv
(3.17)

Indeed, let (x1, . . . , xn) be coordinates of Corollary 3 and suppose that v =
∑

k∈Is
vk

∂
∂xk

. Then
by (3.15) on Gs(q1) the fields Xj with j ∈ Is have the form

Xj = ε−1/2
v

∑

k∈Is

vk
∂

∂xk
, (3.18)

while by construction Xi ∈ span
(

∂
∂xl̄

)

l̄ 6∈Is

, which together with (3.18) implies (3.17). On the

other hand, by (2.46) we have

cjji =
1

2
Xi

(

λs

λl

)(

1 − λs

λl

)−1

, (3.19)

where as before λs(q), λl(q) are the eigenvalues of the transition operator Sq, corresponding to
the eigenspaces Ds(q) and Dl(q). So, from (3.17), (3.19), (3.16), and definition of ǫv it follows
that

Z(εv)

εv
= −Z

(

λs

λl

)(

1 − λs

λl

)−1

, (3.20)

εv(q1) = 1 (3.21)

The right-hand side of (3.20) does not depend on the choice of the vector v. Hence from (3.20)-
(3.21) it follows that on the curve etZq1 the function ǫv does not depend on the choice of the
vector v. Note that any point of Gs(q1) can be connected with q1 by some finite concatenation
of the integral curves of the fields ±Z, where Z ∈ Dl, l 6= s. Therefore by induction on the
number of ”switches”, one gets from (3.20) that on the manifold Gs(q1) the function εv does not
depend on the choice of the vector v. Defining γs, as in (3.14), we obtain (3.11) on Gs(q1) and
hence on U , which completes the proof of Lemma 7.�

Lemma 8 There exist functions βs on Fs(q0) such that (3.9) holds.

Proof. Let, as above, (x1, . . . , xn) be some coordinates from Corollary 3. Denote by χs the
following |Is|-tuple:

χs = {xi}i∈Is . (3.22)

Since by construction

span {Xi}∈Is = span { ∂

∂xi
}i∈Is = Ds, (3.23)
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relations (2.47) and (2.48) are equivalent to the following relations respectively

∀1 ≤ s 6= l ≤ N, i ∈ Is :
∂

∂xi

(

λ2
l

λs

)

= 0, (3.24)

∀1 ≤ s, l, r ≤ N, l 6= s, r 6= s, i ∈ Is :
∂

∂xi

(

λl

λr

)

= 0. (3.25)

First suppose that N = 2. Then from (3.24) there exist functions β̄s(χs), s = 1, 3 such that

λ2
2

λ1
= β̄2(χ2),

λ2
1

λ2
= β̄1(χ1), (3.26)

which easily implies (3.9), if we take β1 = β̄
1/3
1 , β2 = β̄

1/3
2 . For N > 2 a standard analysis of

conditions (3.25) implies that there exist functions βs(χs) such that

λs(q)

λl(q)
=
βs(χs)

βl(χl)
(3.27)

Substituting the last relation in (2.47) one can obtain easily that

∂

∂xj

(

λs(q)

βl(χl)

)

= 0, j ∈ Il, l 6= s (3.28)

Using standard arguments of ”separation of variables” for the last equations, one can easily
conclude that there exist a function σ(χs) such that

λs = σ(χs)
∏

l 6=s

βl(χl). (3.29)

Substituting the last equation to (3.27) we obtain that

σs(χs)

σl(χl)
=
β2

s (χs)

β2
l (χl)

,

which in turn implies that σi = Cβ2
i for some constant C > 0. Replacing functions βi by kβi

for some constant k > 0 one can make C = 1. So,

λs = βs(χs)

N
∏

l=1

βl(χl), (3.30)

which is equivalent to (3.9). �

Lemma 9 If dimFs > 1, then λs is constant on each leaf of the foliation Fs

Proof. Taking the coefficients of u2
i , i 6= j , from (2.60) and using (3.1), we obtain the

following relation
Xj(α

2
i ) = 2ciji(α

2
j − α2

i ) i 6= j. (3.31)

Note that identity (3.31) is stronger than identity (2.58): in the first identity we assume that the
corresponding indices are different, while in the second one we assume that the corresponding
eigenvalues are different. Take any pair of indices i, j ∈ Is such that i 6= j (by assumption |Is| > 1

it is possible). Applying (3.31) and using the fact that αi = αj = λ
1/2
s , we get Xj(λs) = 0 for

any j ∈ Is, which implies the statement of the lemma. �
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Remark 3 The functions βs from relation (3.9) have the intrinsic meaning, because they
can be expressed by the eigenvalues of the transition operator Sq in the following way

βs ◦ prs = λ
N−1
N+1

s

(

∏

l 6=s

λl

)− 2

N+1

(3.32)

From the previous lemma and (3.9) it follows immediately the following

Corollary 4 If dimFs > 1, then the function βs is constant.

To complete the ”only if” part it remains to prove relation (3.10). For this, combining (3.14),
(3.17), and (3.19), then taking into account (3.23) and (3.27), one obtains without difficulties

∀1 ≤ s 6= l ≤ N, i ∈ Il :
∂

∂xi
ln γs =

∂

∂xi
ln

∣

∣

∣

∣

βs(χs)

βl(χl)
− 1

∣

∣

∣

∣

. (3.33)

Again using standard ”separation of variables” arguments we get from the last relations that
there exist one-valuable functions ωs(χs) such that

γs = ωs(χs)
∏

l 6=s

∣

∣

∣

∣

1

βl(χl)
− 1

βs(χs)

∣

∣

∣

∣

. (3.34)

Finally note that by a change of coordinates of the type χs 7→ Fs(χs) we can make ωs ≡ 1 for
any 1 ≤ s ≤ N , which together with (3.34) implies (3.10). This completes the proof of the ”only
if” part.

Note that in the proof of the ”only if” part we actually have used all information, which can
be obtained from relations (3.1) (the only group of coefficients in (2.60) that we did not exploit
are coefficients of uiuj with i 6= j, but the identities that they produce from (3.1) are equivalent
to identities (3.31), which was obtained by exploiting another group of coefficients). Therefore
by Lemma 4 the conditions of the theorem are not only necessary, but also sufficient. The proof
of the theorem is completed. �

For metrics on surfaces Levi-Civita’s theorem is called also Dini’s Theorem, because Dini
obtained it first in [2].

4 The case of corank one distributions

In the present section we investigate the problem of geodesic equivalence of sub-Riemannian
metrics on a distribution D of corank 1, especially, if D is contact or quasi-contact. From the
beginning we work in the neighborhood of regular point q0, extending then the results to the
non-regular points by the limiting process, when it is possible.

Let the functions Rj and Qjk be as in (2.18) and (2.19) respectively. All these functions are
polynomials on the fibers. In general, these functions depend on the choice of the adapted frame
to the pair of the metrics (G1, G2).

Definition 6 We will say that the ordered pair (G1, G2) of sub-Riemannian metrics on the
distribution D satisfies the second divisibility condition on an open set U , if there exist an adapted
frame to the pair (G1, G2) in U such that for any q ∈ U on the fiber T ∗

q U the polynomial Rj is
divided by the polynomial Qjm+1 for any index j such that Qjm+1 6≡ 0 on T ∗

q U , 1 ≤ j ≤ m.
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Note that c̄m+1
ji = 1

αiαj
cm+1
ji for any i, j such that 1 ≤ i ≤ j. Therefore

Qjm+1 =
1

αj

m
∑

i=1

cm+1
ji ui. (4.1)

Proposition 8 Suppose that for given two sub-Riemannian metrics G1 and G2 on corank 1
distribution D and for some open set U of regular point q0 there exists an orbital diffeomorphism
of the extremal flows of these metrics in some open set B in H1 ∩ T ∗U , π(B) = U . Then the
pair (G1, G2) satisfies the second divisibility condition on U .

Proof. Fix some index j, 1 ≤ j ≤ m, such that

Qjm+1 6≡ 0. (4.2)

Substituting (2.37) into (2.21) we obtain

−
~h1(Qjm+1)Rj

αjQ2
jm+1P1/2

=
polynomial

Qjm+1P3/2

or, equivalently,

P~h1(Qjm+1)Rj

Qjm+1
= polynomial. (4.3)

Positive definite quadratic form P cannot be divided by Qjm+1, which is linear function with

real coefficients. Let us prove that Qjm+1 does not divide ~h1(Qjm+1). Assuming the converse,

one can conclude that the coefficients of ujum+1 in the quadratic polynomial ~h1(Qjm+1) has to
be equal to zero (because Qjm+1 does not depend both on uj and on um+1). On the other hand,
from (2.24) and (4.1) it is not hard to get that this coefficient is equal to

− 1

αj

m
∑

i=1

(

cm+1
ji

)2
.

Hence cm+1
ji = 0 for all 1 ≤ i ≤ m, which contradicts the assumption (4.2). So, relation (4.3)

yields that Rj has to be divided by Qjm+1, i.e., the second divisibility condition holds.�

Proposition 9 Suppose that for given two sub-Riemannian metrics G1 and G2 on some
(m,m+ 1)-distribution D and for some open set U there exists an orbital diffeomorphism of the
extremal flows of these metrics in some open set B in H1 ∩ T ∗U , π(B) = U . Suppose also that
there exists the basis (X1, . . . ,Xm) of D adapted to the ordered pair (G1, G2), and the transition
operator Sq has the form Sq = diag (α2

1(q), . . . , α
2
m(q)) in this basis (αi > 0). Then the following

two statements hold

1. If

I
def
=
{

j ∈ {1, . . . ,m} : [Xj ,D](q) 6⊂ D(q) ∀q ∈ U
}

, (4.4)

then αi = αj in U for all i, j ∈ I;

2. If α
def
= αj , j ∈ I, and Ī =

{

j ∈ {1, . . . ,m} : αj = α
}

, then

∀j ∈ Ī : Xj(α) = 0 (4.5)
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Proof. By Proposition 8 for any j ∈ I the polynomial Rj is divided by αjQjm+1. But by

(2.37) the polynomial
Rj

αjQjm+1
does not depend on j ∈ I (because it is equal to

√
PΦm+1). In

other word,

Rj =
(

m+1
∑

i=1

riui

)

αjQjm+1, (4.6)

where coefficients ri do not depend on j ∈ I. As a consequence of the last identity and (2.37)
one has

Φm+1 =

∑m+1
i=1 riui√

P
. (4.7)

Using (2.60) and (4.1), one can compare the coefficients of uium+1, 1 ≤ i ≤ m in both sides of
(4.6) to get

α2
jc

m+1
ji = rm+1c

m+1
ji .

Since by definition for any j ∈ I there exist 1 ≤ i ≤ m such that cm+1
ji 6= 0, then

∀j ∈ I : α2
j = rm+1 (4.8)

In other words, αj does not depend on j ∈ I, which concludes the proof of the first statement
of the proposition.

Let us prove the second statement. From (2.60) and the fact that αj = αi = α for all i ∈ I
it follows that

∀i ∈ I :
(

the coefficient of u2
i in Rj

)

= −1

2
Xj(α

2). (4.9)

If j ∈ Ī\I, then Qjm+1 = 0 and by identity (2.20) we have Rj = 0, which together with (4.9)
implies that Xj(α

2) = 0.
If j ∈ I, then comparing the coefficients of u2

i , i ∈ I, i 6= j in both sides of (4.6) and using
relations (4.9), (4.1), we obtain

1

2
Xj(α

2) = ric
m+1
ij . (4.10)

Substituting identity (4.7) into identity (2.21) with s = m + 1, then using (2.53), and finally
multiplying both sides on

√
P, we get

~h1

(

m+1
∑

i=1

riui

)

− 1

2

(

m
∑

j=1

Xj(α
2
j )

α2
j

uj

)

m+1
∑

i=1

riui −Qm+1 m+1

m+1
∑

i=1

riui =

m
∑

k=1

Qm+1 kαkuk (4.11)

Comparing the coefficients of ujum+1, j ∈ I in both sides of (4.11) one can obtain without
difficulties that

m
∑

i=1

ric
m+1
ij +

1

2
Xj(α

2) = 0,

which together with (4.10) implies that
nj+1

2 Xj(α
2) = 0, where nj is the number of indices i,

1 ≤ i ≤ m such that cm+1
ij 6= 0. Therefore Xj(α

2) = 0 for all j ∈ I. The proof of the second
statement is also completed. �

As a direct consequence of Proposition 3 and the previous proposition we obtain the following

Theorem 2 If two sub-Riemannian metrics G1 and G2, defined on a contact distribution
D, are geodesically equivalent at some point q0, then they are constantly proportional in some
neighborhood of q0.
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Proof. First note that it is sufficient to prove this theorem for regular q0: using the density
of the set of regular points (Proposition 1), one can extend the theorem to the non-regular
points by passing to the limit. If q0 is regular, then there exists the basis (X1, . . . ,Xm) of D
adapted to the ordered pair (G1, G2). Let, as before, the transition operator Sq has the form
Sq = diag (α2

1(q), . . . , α
2
m(q)) in this basis (αi > 0). In the case of the contact distribution the

set I, defined by (4.4), coincides with {1, . . . ,m}. Therefore, by consecutive use of Propositions
3 and 9 we obtain that there exists the function α such that αi = α and Xi(α) = 0 for any i,
1 ≤ i ≤ m. This together with the fact that contact distribution is bracket generating implies
that αi = α = const for any i, 1 ≤ i ≤ m, which concludes the proof of the theorem. �

For (2, 3)-distributions we can extend the last result from contact to all bracket-generating
distributions, because the set of points, where bracket-generating (2, 3)- distributions are contact,
is open and dense. Namely, we have the following

Corollary 5 If two sub-Riemannian metrics G1 and G2, defined on a bracket-generating
(2, 3)-distribution D, are geodesically equivalent at some point q0, then they are constantly pro-
portional in some neighborhood of q0.

Now consider the case of the quasi-contact distribution D. The following theorem gives the
classification of all geodesically equivalent sub-Riemannian metrics, defined on such distribution:

Theorem 3 Suppose that G1 and G2 are two sub-Riemannian metrics on the quasi-contact
distribution D such that G2 6≡ constG1. Assume also that the vector field X is tangent to the
abnormal line distribution of D and unit w.r.t. the metric G1 (i.e., G1q(X,X) = 1). Then the
metrics G1 and G2 are geodesically equivalent at the point q0 if and only if in some neighborhood
U of q0 the following four conditions hold simultaneously:

1. If
Di(q) = {v ∈ D(q) : Giq(v,X) = 0}, i = 1, 2, (4.12)

then D1(q) = D2(q) and the distribution D2
1 is codimension 1 integrable distribution (here

D2
1 = D1 + [D1,D1]);

2. If F is the foliation of the integral hypersurfaces of the distribution D2
1, then the flow etX

generated by the vector field X preserves the foliation F , i.e., it maps any leaf of F to a
leaf of F ;

3. There exists the one-variable function β(t), β(0) = 1, such that if F0 is the leaf of the

foliation F passing through q0 and G1

∣

∣

∣

etxF0

is the restriction of the metric G1 to the leaf

etXF0, then

G1

∣

∣

∣

etXF0

= β(t)
(

(e−tX )∗G1

)∣

∣

∣

etXF0

; (4.13)

4. There exist two constants C1 > 0 and C2 > −1, C2 6= 0, such that if F0 is as before and

G2

∣

∣

∣

etxF0

is the restriction of the metric G2 to the leaf etXF0, then

G2

∣

∣

∣

etXF0

=
C1

1 + C2β(t)
G1

∣

∣

∣

etXF0

, (4.14)

∀q ∈ etXF0 : G2q

(

X(q),X(q)
)

=
C1

(

1 +C2β(t)
)2 . (4.15)
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Before proving Theorem 3, let us make some remarks. According to this theorem for the
quasi-contact distributionD the pair (G1, G2) of constantly non-proportional geodesically equiv-
alent metrics at the point q0 is uniquely determined by fixing

a) a vector field X tangent to the abnormal line distribution of D;

b) a hypersurface F0, passing through q0 and transversal to the abnormal line distribution
of D;

c) a sub-Riemannian metric Ḡ on the contact distribution D̄, defined on the hypersurface F0

as follows: D̄(q) = D(q) ∩ TqF0, q ∈ F0;

d) a one-variable function β(t) with β(0) = 1;

e) two constants C1, C2, where C1 > 0 C2 > −1, and C2 6= 0.

The metrics G1 can be uniquely recovered from the data of a)-d). For this we extend the
distribution D̄ and the metric Ḡ on D̄ from F0 to M by the flow etX . Namely, we set

∀q ∈ F0 : D̄(etXq) = (etX)∗D̄(q), ḠetXq(v,w) = Ḡq

(

(e−tX )∗v, (e
−tX )∗w

)

, v, w ∈ D̄(etXq).

Then the metric G1 is uniquely defined by the following two conditions:

• for any q ∈ etXF0 on the subspace D̄(q) the metric G1 coincides with Ḡ multiplied by the
factor β(t)

• for any q the vector X(q) is unit and orthogonal to D̄(q) w.r.t. G1.

In particular, it shows that the metrics on quasi-contact distributions, admitting constantly
non-proportional geodesically equivalent metrics, are very special. The metric G2 is uniquely
determined by G1 and two constants C1 and C2 with the properties prescribed in e). In other
words, if the metric G1 admits constantly non-proportional geodesically equivalent metrics, then
the set of such metrics is two-parametric. Note also that if one takes C2 = 0 in statement 4 of
Theorem 3, then the metrics are constantly proportional.

Proof of Theorem 3. Let us prove the ”only if” part. Let the metrics G1 and G2 be
geodesically equivalent. First suppose that q0 is regular point w.r.t. the pair (G1, G2). As before
let (X1, . . . ,Xm) be a basis of D adapted to the ordered pair (G1, G2) and suppose that the
transition operator Sq = diag

(

α2
1(q), . . . , α

2
m(q)

)

(where αi > 0) w.r.t. the basis (X1, . . . ,Xm).
First note that the field X has to coincide with one of the fields Xi, 1 ≤ i ≤ m. Otherwise,

the set I, defined by (4.4), coincides with {1, . . . ,m}. Then by the same arguments, as in the
proof of Theorem 2, we obtain that the metrics G1 and G2 are constantly proportional, which
contradicts our assumptions. Without loss of generality, it can be assumed that X = Xm.
Secondly by Proposition 9 for any 1 ≤ i, j ≤ m−1 we have αi = αj . In the sequel we set αi = α
for 1 ≤ i ≤ m− 1.

Since the field Xm = X has no singularities, by passing to the limit one obtains that the
adapted basis with the same properties exists also in a neighborhood of non-regular points
w.r.t. to the pair (G1, G2). Moreover, αm 6= α. Indeed, assuming the converse we obtain from
the statement 2 of Proposition 9 that the set Ī =

{

j ∈ {1, . . . ,m} : αj = α
}

coincides with
{1, . . . ,m}. But from this again by the same arguments, as in the proof of Theorem 2, we obtain
that the metrics G1 and G2 are constantly proportional, which contradicts our assumptions.
Actually, we have shown that for geodesically equivalent metrics q0 is always regular: in some
neighborhood of q0 the number of distinct eigenvalues of the transition operator is constant and
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equal either to 1 (in this case the metrics are constantly proportional) or to 2. Besides, if D1

and D2 are as in (4.12), then

D1 = D2 = span(X1, . . . ,Xm−1).

From (2.47) it follows that Xi

(

α2
m

α

)

= 0 for all 1 ≤ i ≤ m − 1, which together with (4.5)

implies
∀1 ≤ i ≤ m− 1 : Xi(αm) = 0. (4.16)

Replacing the (4.5) and (4.16) in (2.46), we obtain also that

∀1 ≤ i ≤ m− 1 : cmmi = 0. (4.17)

Let us complete the adapted basis (X1, . . . ,Xm) somehow to the frame (X1, . . . ,Xm+1).

Lemma 10 The distribution D2
1 = D1 + [D1,D1] is integrable.

Proof. Using (2.60) and (4.1), let us compare the coefficients of uium, 1 ≤ i ≤ m− 1 in both
sides of (4.6), where 1 ≤ j ≤ m− 1. As a result, we get easily

∀1 ≤ i 6= j ≤ m− 1 : (α2 − α2
m)cmji = rmc

m+1
ji + ric

m+1
jm .

But by construction m 6∈ I, i.e., cm+1
jm = 0 for all 1 ≤ j ≤ m − 1. Therefore the last relation is

equivalent to the following identity:

∀1 ≤ i 6= j ≤ m− 1 : cmji =
rm

α2 − α2
m

cm+1
ji . (4.18)

Hence [Xi,Xj ] ∈ span
(

X1, . . . ,Xm−1,
rm

α2−α2
m
Xm +Xm+1

)

for all 1 ≤ i, j ≤ m − 1 or , equiva-

lently,

D2
1 = span

(

D1,
rm

α2 − α2
m

Xm +Xm+1

)

. (4.19)

To prove the lemma it is sufficient to prove that

∀1 ≤ i ≤ m− 1 :
[

Xi,
rm

α2 − α2
m

Xm +Xm+1

]

∈ span
(

D1,
rm

α2 − α2
m

Xm +Xm+1

)

. (4.20)

Using (4.5) and (4.16), it is easy to show that (4.20) is equivalent to the following identity

Xi(rm) + rmc
m
mi + cmm+1i(α

2 − α2
m) − rmc

m+1
m+1 i = 0 (4.21)

Let us prove identity (4.21). First note that from (4.5) and (4.10) it follows easily that ri = 0
for 1 ≤ i ≤ m − 1 (here we use also the fact that for given i, 1 ≤ i ≤ m − 1, there exist j,
1 ≤ j ≤ m− 1, such that cm+1

ij 6= 0). From this and (4.5) it follows that the identity (4.11) can
be rewritten in the following form:

~h1

(

m+1
∑

i=m

riui

)

− 1

2

Xm(α2
m)

α2
m

um

m+1
∑

i=m

riui −Qm+1 m+1

m+1
∑

i=m

riui =

m
∑

k=1

Qm+1 kαkuk (4.22)

Comparing the coefficients of uium, 1 ≤ i ≤ m − 1 in both sides of (4.22) by use of (2.24) and
(2.19) it is not difficult to obtain

Xi(rm) + rmc
m
mi + rm+1(c

m
m+1i + cim+1m) − rmc̄

m+1
m+1 iα = (c̄im+1m + c̄mm+1i)ααm (4.23)

From (2.61) and (2.22) it follows that c̄m+1
m+1 i = 1

αc
m+1
m+1 i, c̄

i
m+1m = α

αm
cim+1m, and c̄mm+1i =

αm

α cmm+1i, while by (4.8) we have rm+1 = α2. Substituting all this to (4.23) we get (4.21), which
completes the proof of the lemma. �
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Lemma 11 If F is the foliation of the integral hypersurfaces of the distribution D2
1, then

the flow etX generated by the vector field X preserves the foliation F .

Proof. From the previous lemma it follows that in some neighborhood U of q0 there ex-
ist coordinates (x1, . . . , xm+1) such that the leaves of F are {xm = const} and Xm = ν ∂

∂xm

for some function ν. By construction, all vector fields Xi with 1 ≤ i ≤ m − 1 belong to
span

(

∂
∂x1

, . . . , ∂
∂xm−1

, ∂
∂xm+1

)

. Therefore cmmi = Xi(ν)
ν for all 1 ≤ i ≤ m− 1, which together with

(4.17) implies that Xi(ν) = 0 for all 1 ≤ i ≤ m− 1. Then ν is constant on each leaf of F , which
equivalent to the statement of the lemma. �

Lemma 12 Relation (4.13) holds for some one-variable function β(t).

Proof. Actually the proof of this lemma is very similar to the proof of Lemma 7. Since the
vector field X = Xm satisfies [X,D] ⊂ D, the flow etX preserves the distribution D. This and
the previous lemma implies that etX preserves also the distributionD1 (note that by the previous
lemma D1(q) = D(q) ∩ TqF(q), where F(q) is the leaf of the foliation F , passing through the
point q).

Fix some point q1 ∈ F0. Denote by Lq1
the abnormal extremal trajectory passing through

q1. Fix some vector v ∈ Ds(q1) such that G1q1
(v, v) = 1. By construction for any point q ∈ Lq1

such that q = etXq1 there exist a unique vector Yv(q) ∈ D1(q) such that d(e−tX )qYv(q) = v.
Denote by εv the following function on the curve Lq1

.

εv(q)
def
= G1q

(

Yv(q), Yv(q)
)

, q ∈ Lq1
(4.24)

By the same arguments as in the proof of Lemma 7, we obtain that the function εv does not
depend on the choice of the unit vector v from D1(q1). It implies that for any q in some
neighborhood U of q0 (here any coordinate neighborhood from the proof of the previous lemma
can be taken as U) there is β(q) such that if q = etXq1, where q1 ∈ F0, then

G1

∣

∣

∣

etXF0

= β
(

(e−tX )∗G1

)∣

∣

∣

etXF0

(4.25)

Besides, similarly to (3.20)-(3.21), we have

X(β)

β
= −X

(

α2

α2
m

)(

1 − α2

α2
m

)−1

, (4.26)

β
∣

∣

∣

F0

= 1. (4.27)

Finally by (4.5) and (4.16) the functions α and αm are constant on each leaf of the foliation
F . Therefore (4.26)-(4.27) implies that the function β is constant on each leaf of the foliation
F too. This fact together with (4.25) implies (4.13).�

In order to complete the proof of the ”only if” part it remains to prove identities (4.14) and
(4.15). By (2.12) and statement 1 of Proposition 9

∀q ∈ etXF0 : G2q = α2(q)G1q (4.28)

∀q ∈ etXF0 : G2q

(

X(q),X(q)
)

= α2
m(q). (4.29)
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So, it remains to find the functions α and αm. As was mentioned in the proof of the previous
lemma, the functions α and αm are constant on each leaf of the foliation F . Besides, by (2.47)

we have Xm( α2

αm
) = 0. So,

α2

αm
≡ C, (4.30)

where C is constant. Then from (2.46) it follows that for any j, 1 ≤ j ≤ m− 1

Xm

(

C

αm

)

= 2cjjm

(

1 − C

αm

)

(4.31)

By Lemmas 10-12 we can choose the coordinates (y1, . . . , ym, t) in a neighborhood of q0 such
that q0 = (0, . . . , 0) and

Xm =
∂

∂t
; (4.32)

Xj = β(t)−1/2
m
∑

k=1

νjk
∂

∂yk
, 1 ≤ j ≤ m− 1. (4.33)

As in (3.17) this yields that

cjjm = −1

2

d

dt
lnβ(t).

Substituting the last formula in (4.31), one can obtain without difficulties that

αm =
C

1 + C2β(t)
(4.34)

for some constant C2, C2 > −1, C2 6= 0. Then by (4.30)

α2 = Cαm =
C2

1 + C2β(t)
(4.35)

Setting C1 = C2 and substituting (4.35) and (4.34) into (4.28) and (4.29), we get (4.14) and
(4.15). The proof of the ”only if” part of the theorem is completed.

Note that in the proof of the ”only if ” part we actually have used all information, contained
in (4.6), which is equivalent to (2.20). Also, it can be shown by direct check that if all conditions
1-4 of Theorem 3 hold then the identity (4.22) holds too (but this identity is equivalent to (2.21)).
From this, Lemma 2, and Proposition 2 it follows that conditions 1-4 of the theorem are also
sufficient for the geodesic equivalence of our metrics at q0. �

5 The case of Riemannian metrics on a surface near non-regular

isolated point

In the present section for the Riemannian metrics on a surface we obtain the classification
of geodesically equivalent pairs at non-regular point (the point of bifurcation of the eigenvalues
of the transition operator). Namely, we consider the case when two Riemannian metrics on a
surface are proportional in an isolated point. Since the set of all 2× 2 symmetric matrices with
the equal eigenvalues has codimension 2 in the set of all 2× 2 symmetric matrices, we have that
for generic pair of Riemannian metrics on a surface the set of points of their proportionality
consists of isolated points. Therefore its is natural to consider the case when two Riemannian
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metrics on a surface are proportional in an isolated point. It turns out that Dini’s Theorem
(i.e., Levi-Civita’s theorem in the case of a surface) can be naturally extended to this case.

First let us formulate Dini’s Theorem in the case of non-proportional metrics and analyze
its additional features.

Theorem 4 (Dini’s Theorem) Suppose that two Riemannian metrics G1 and G2 on a sur-
face are non-proportional at some point q0. Then they are geodesically equivalent at q0 if and only
if in some neighborhood of q0, there exist coordinates (x1, x2), q0 = (x0

1, x
0
2), and one-variable

functions β1(x1) and β2(x2) (β1(x
0
1) < β2(x

0
2)) such that in this coordinates

|| · ||21 =

(

1

β1(x1)
− 1

β2(x2)

)

(dx2
1 + dx2

2), (5.1)

|| · ||22 = β1(x1)β2(x2)

(

1

β1(x1)
− 1

β2(x2)

)

(

β1(x1)dx
2
1 + β2(x2)dx

2
2

)

, (5.2)

where ||v||2i = Gi(v, v), i = 1, 2.

The coordinates, appearing in Theorem 4, will be called Dini’s coordinates of the ordered
pair of Riemannian metrics (G1, G2). The following lemma will be useful in the sequel

Lemma 13 If (x1, x2) and (x̄1, x̄2) are two Dini’s coordinates of the ordered pair of Rie-
mannian metrics (G1, G2) on the same neighborhood U , then x̄i = ±xi + ci some constants ci,
i = 1, 2.

Proof. From Corollary 3 and the fact that in Theorem 1 we assume that β1(x
0
1) < β2(x

0
2)

it follows that the coordinate net of all Dini’s coordinates on U coincide: D1 = {dx2 = 0} =
{dx̄2 = 0} is the line distribution of the eigenvectors of the transition operator, corresponding
to its smallest eigenvalue, while D2 = {dx1 = 0} = {dx̄1 = 0} is the line distribution of
the eigenvectors of the transition operator, corresponding to its biggest eigenvalue. Hence the
transition function between the coordinates has a form xi = ψi(x̄i), i = 1, . . . n. Then the first
metric is written in the coordinates (x̄1, . . . , x̄n) as follows:

|| · ||21 =

(

1

β1

(

ψ(x̄1)
) − 1

β2
2

(

ψ(x̄2)
)

)

2
∑

j=1

(ψ′
i(x̄j))

2(d x̄j)
2.

By Remark 3 the coefficients of dx2
j in (5.1) do not depend on the choice of the Dini coordinates.

Therefore (ψ′
i(x̄j))

2 ≡ 1, which implies the statement of the Lemma. �

Recall that a Riemannian metric on a surface defines the canonical conformal structure: In
a neighborhood of any point there is a coordinate system in which the Riemannian metric has
the form

|| · ||2 = µ(x, y)(dx2 + d y2). (5.3)

Such coordinates are called isothermal (see, for example, [8] or [3]). The transition function
from one isothermal coordinates to some other is conformal mapping, up to the orientation, so
the set of all charts with isothermal coordinates defines the conformal structure. Note that by
(5.1) all Dini’s coordinates are isothermal w.r.t. the first metric G1.

Now suppose that the Riemannian metrics G1 and G2 are proportional at some isolated
point q0 and geodesic equivalent in a neighborhood of this point. Choose in a neighborhood B
of q0 some isothermal coordinates (x, y) w.r.t. the first metric G1. Also, we can assume that the
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metrics are geodesic equivalent in B (otherwise we can take a smaller neighborhood). By above
for any q ∈ B in a neighborhood Bq of q there exist Dini’s coordinates (u, v) of the ordered pair
(G1, G2). We also can take them such that they define the same orientation as (x, y). The pair
(Bq, u(x, y) + iv(x, y) is a function element of an analytic function. Taking one of such function
elements and using the standard procedure of the analytic continuation, we get the analytic
function F in the punctured neighborhood B\q0 such that each of its function elements defines
the transition function from the chosen isothermal coordinates (x, y) to Dini’s coordinates of
the ordered pair (G1, G2) in the neighborhood of this function element. The function F will be
called a Dini transition function of the ordered pair of geodesic equivalent Riemannian metrics
from the given isothermal coordinates (x, y). The following theorem gives the characterization
of Dini’s transition functions at an isolated point of the proportionality of the metrics:

Theorem 5 If F (z) is some Dini transition function of the ordered pair of Riemannian
metrics, which are proportional at an isolated point q0 and geodesic equivalent in a neighborhood
of this point, then the function (F ′)2 has a pole of order 1 or 2 at q0. Besides, if (F ′)2 has a
pole of order 2 at q0, then the principle negative coefficient in its Laurent expansion at q0 has to
be real.

Proof. First note that the function (F ′)2 is an one-valued function on some punctured
neighborhood B\q0 of q0. Indeed, by Lemma 13 the function elements (V, F1) and (V, F2) of F
(with the common neighborhood of definition) satisfy

F1(z) ≡ ±F2(z) + c, z = x+ iy, (5.4)

where c is some complex constant. This implies that (F ′
1)

2 ≡ (F ′
2)

2.

Now let us prove that (F ′)2 has a pole at q0. Indeed, suppose that in the original coordinates
the metric G1 satisfies (5.3) with some function µ. Writing the metric G1 in Dini’s coordinates,
we obtain that

µ =
( 1

β1
− 1

β2

)

|F ′|2, (5.5)

where the functions βi are as in Theorem 4. The functions βi are expressed by the eigenvalues
λj of the transition operator as in (3.32) with n = 2. The condition of the proportionality of
the metrics at q0 implies that

β1(q0) = β2(q0) (5.6)

(because λ1(q0) = λ2(q0)). From this, (5.5) and the fact that the function µ has no singularity
at q0 it follows that limz→q0

|F ′(z)|2 = ∞, i.e. (F ′)2 has a pole at q0.

Although the function F is in general multiple-valued, by (5.4) the families of the level sets of
the function ReF (the function ImF ) for all its branches coincide. By construction the function
β1 is constant on the level set of ReF , while the function β2 is constant on the level set of ImF .
Using this fact it is not difficult to prove that the order of pole of (F ′)2 at q0 is not greater
than 2. Assuming the converse, we obtain that the function F 2 also has a pole at q0. So, F 2

maps a puncture neighborhood of q0 onto the neighborhood of infinity and also sends the point
q0 to ∞. But any level set of ReF is the preimage w.r.t. the mapping F 2 of some parabola of
the type u = c2 − v2

4c2 on the plane w, where w = F 2(z), w = u + iv. Such parabolas have ∞
as an accumulation point. Hence q0 is the accumulation point of any level set of the function
ReF . This together with the fact that β1 is constant on the level set of ReF and continuous
at q0 implies that β1 is identically equal to some constant C1 in a neighborhood of q0. In the
same way, β2 is identically equal to some constant C2 there. Moreover, by (5.6) C1 = C2. But
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it means that our metrics are proportional in the neighborhood of q0, which contradicts our
assumptions. So, the order of pole of (F ′)2 at q0 is not greater than 2.

To complete the proof of the theorem it remains to show that if (F ′)2 has a pole of order 2 at
q0, then the principle negative coefficient in its Laurent expansion at q0 is real. Indeed, if (F ′)2

has a pole of order 2 with the principle negative coefficient a in its Laurent expansion at q0,
then F has the logarithmic singularity at q0 with coefficient

√
a near the logarithm. In this case

after the appropriate change of independent variable z in a neighborhood of q0 (i.e., conformal
change of coordinates in a neighborhood of q0) one can get F (z) =

√
a log z, q0 = 0. But if a is

not real, then
√
a is neither real nor pure imaginary. In this case all level sets of both ReF and

ImF are spirals having q0, as an accumulation point. As above, it implies that functions β1 and
β2 are equal to the same constant, which is impossible. The proof of the theorem is completed.
�

According to the previous theorem only the following two situation are possible at an isolated
point of proportionality of two metrics:

1) (F ′)2 has a simple pole at q0 ⇔ F (z) =
√

G(z) for some analytic function G(z), having
at q0 zero of order 1 (i.e., F has the ”square root” singularity at q0). In this case after the
appropriate change of independent variable z in a neighborhood of q0 one can get F (z) =

√
z,

q0 = 0;
2) F ′ has a simple pole at q0 with real or pure imaginary residue at q0 ⇔ F (z) has the

logarithmic singularity at q0 with real or pure imaginary coefficient b near logarithm. In this
case after the appropriate change of independent variable z in a neighborhood of q0 one can get
F (z) = b log z, q0 = 0, where b is real or pure imaginary constant. If b is real then the level
sets of ImF (z) are the rays, starting at 0. Hence by the same argument as in the proof of the
previous theorem we can conclude that the function β2 is constant. Besides, the function β1 in
this case depends only on |z| (here βi as in Theorem 1). In the same way, if b is pure imaginary,
then β1 is constant and β2 depends only on |z|.

Using 1), 2) and Theorem 1, we obtain without difficulties the following analog of Dini’s
Theorem:

Theorem 6 (Generalization of Dini’s Theorem to the case of an isolated non-regular point)
Two Riemannian metrics G1 and G2 on a surface M , which are proportional in an isolated point
q0, are geodesic equivalent in a neighborhood of this point if and only if one of the following two
conditions holds:

1. In a neighborhood of q0, there exist coordinates (x, y), q0 = (0, 0) and two one-variable
smooth functions U and V , satisfying 0 < U(u) < V (0) = U(0) < V (v) for all positive u
and v, U ′(0) = −V ′(0), and V ′(0) > 0, such that in the punctured neighborhood of q0 the
metrics G1 and G2 satisfy

|| · ||21 =





1

U
(

r cos2 θ
2

) − 1

V
(

r sin2 θ
2

)





1

4r
(dr2 + r2dθ2), (5.7)

|| · ||22 =
S

8r

(

(A− S cos θ)dr2 − 2Sr sin θdrdθ + (A+ S cos θ)r2dθ2
)

, (5.8)

where

A = U
(

r cos2
θ

2

)

+ V
(

r sin2 θ

2

)

, S = V
(

r sin2 θ

2

)

− U
(

r cos2 θ

2

)

,

and (r, θ) are the corresponding polar coordinates;
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2. In a neighborhood of q0, there exist coordinates (x, y), q0 = (0, 0), positive constants a, C,
and an one-variable smooth functions R(r), satisfying R(r) 6= R(0) for r > 0, R(0) = C,
R′(0) = 0, and R′′(0) 6= 0, such that in the punctured neighborhood of q0 the metrics G1

and G2 satisfy

|| · ||21 =

∣

∣

∣

∣

1

C
− 1

R(r)

∣

∣

∣

∣

a

r2
(dr2 + r2dθ2), (5.9)

|| · ||22 =
aCR(r)

r2

∣

∣

∣

∣

1

C
− 1

R(r)

∣

∣

∣

∣

(

R(r)dr2 + Cr2dθ2
)

, (5.10)

where (r, θ) are the corresponding polar coordinates.

Remark 4 The conditions on the functions U and V in the case 1 and on R in the case 2
follows easily from the fact that the metrics are positive definite and nonsingular at q0.

Remark 5 Using the standard arguments of Complex Analysis, one can show that for the
pair of geodesically equivalent metrics the set of non-regular points cannot be a rectifiable curve
Γ: in this case one can construct an one-valued Dini transition conformal function out of Γ
which goes to infinity, when one tends to Γ. Then by Morera Theorem the function 1/F is
analytic and equal to zero on Γ and so everywhere, which is impossible.
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