There are a total of eight problems. No calculators are allowed.

1. (a) Use Stokes' Theorem to compute the integral \(\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} \), where \(\mathbf{F}(x,y,z) = \begin{pmatrix} yz \mathbf{i} - xz \mathbf{j} + (x^2-xy+y^2) \mathbf{k} \end{pmatrix} \) and the surface \(S \) is the part of the sphere \(x^2+y^2+z^2 = a^2 \) that lies inside the cylinder \(y^2 + z^2 = b^2 \) and satisfies \(x > 0 \). Note that \(a > b > 0 \).

(b) Give a sketch of the surface and region under consideration in (a).

Solution

Stokes' Theorem gives \(\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} \), where \(S \) and \(\partial S \) can be seen from the sketch below:

On \(\partial S \), \(x^2+y^2+z^2 = x^2+(y^2+z^2) = x^2+b^2 = a^2 \), so \(x = \sqrt{a^2-b^2} \) (\(> 0 \)). The curve \(\partial S \) lies on \(y^2+z^2 = b^2 \). So we parametrize it by

\[
\begin{align*}
 y &= b \cos \theta \\
 z &= b \sin \theta \\
 0 &\leq \theta \leq 2\pi,
\end{align*}
\]

\[
\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \left((y^2)dx + (-x^2)dy + (b^2-x^2+y^2)dz \right)
\]

\[
= \int_0^{2\pi} \left(b \cos \theta \cdot b \sin \theta \cdot d(\sqrt{a^2-b^2}) + \sqrt{a^2-b^2} \cdot b \sin \theta \cdot d(b \cos \theta) + (b^3 \sin^2 \theta - \sqrt{a^2-b^2} \cdot b \cos \theta + b \cos \theta) \cdot d(b \sin \theta) \right)
\]

\[
= \int_0^{2\pi} \left(0 + b^2 \sqrt{a^2-b^2} \sin \theta \cdot d\theta + (b \sqrt{a^2-b^2} \cos \theta - b \sqrt{a^2-b^2} \cos \theta + b^2 \cos \theta) \cdot d\theta \right)
\]

\[
= \pi b^2 \sqrt{a^2-b^2} + b^2 \left(1 - \sqrt{a^2-b^2} \right) \pi = \pi b^2.
\]
2. Selected parts from
 (a) Exercise 20, p. 931 and
 (b) Exercises 21–26, p. 937.

3. Find the flux of the vector field \(\mathbf{E}(x, y, z) = (5x^2 - y) \mathbf{i} + 6y \mathbf{j} - (x-63) \mathbf{k} \) over the sphere \((x-a)^2 + (y-b)^2 + (z-c)^2 = r^2 \), where \(r > 0 \).

 (Gauss's Divergence Theorem)

 Solu Flux \(\iiint_{S} \mathbf{E} \cdot d\mathbf{S} = \iiint_{V} \nabla \cdot \mathbf{E} \, dV. \)

 \[\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} (5x^2 - y) + \frac{\partial}{\partial y} (6y) + \frac{\partial}{\partial z} (x-63) = 10x + 6 + 6 = 10x + 12 \]

 The ball \(V \) can be parameterized by

 \[
 \begin{align*}
 x &= a + r \sin \phi \cos \theta, \quad 0 \leq \phi \leq \pi, \quad 0 \leq \theta \leq 2\pi, \\
 y &= b + r \sin \phi \sin \theta, \\
 z &= c + r \cos \phi, \quad 0 \leq r \leq r
 \end{align*}
 \]

 So

 \[
 \iiint_{V} (10x + 12) \, dV = \iiint_{V} [10(x-a^2 + b^2 + c^2)] \, dV
 \]

 \[
 = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{r} 10 \rho^2 \sin \phi \cos \theta + 10 \rho^2 \sin \phi \sin \theta + 10 \rho^2 \cos \theta \, d\rho \, d\phi \, d\theta
 \]

 \[
 = 10 \int_{\theta=0}^{2\pi} \cos \theta \, d\theta \int_{\phi=0}^{\pi} \sin^2 \phi \, d\phi \int_{\rho=0}^{r} \rho^2 \, d\rho + (10a^2 + 12) \iiint_{V} dV
 \]

 \[
 = (10a^2 + 12) \cdot \text{Volume of the ball}
 \]

 \[
 = (10a^2 + 12) \cdot \frac{4}{3} \pi r^3.
 \]
4. Exercise 23, p.899. (Greens Theorem) (Already discussed in class).

5. To be selected from Test I, Problems 1 and 4:
 Problem 1 is the Laplace equation;
 Problem 4 is the limit.
 See the Answer Key posted.

6. To be selected from Test II, Problems 1 and 2:
 Problem 1 is the constrained max and min problem;
 Problem 2 is the critical point problem.
 See the Answer Key posted.

7. Problem 4, Test II:
 \[\int_{-2}^{2} \int_{-2}^{2} \sin(-x^2 + 12x + 5) \, dx \, dy \]

8. To be selected from Test III, Problems 1 and 5:
 Problem 1 involves finding \(f \) such that \(\vec{F} = \nabla f \);
 Problem 5 involves finding the volume of an ice cream cone.
 See the Answer Key posted.