
Topology/Geometry Qualifying Exam
(January 2012)

Remark: In all solutions you must write a justification for your answers. Please start each problem
in a new page.

Problem 1. Given P ∈ R2 let Bϵ(P ) and Sϵ(P ) denote, respectively, the open Euclidean ball and
the circle of radius ϵ centered at P . Let X = B1(0) ∪ S1(0) denote the closed ball of radius 1
centered at the origin 0 ∈ R2. Given P ∈ S1(0) and 0 < ϵ < 1/2, define

Nϵ(P ) = {P} ∪Bϵ ((1− ϵ)P ) ,

where (1 − ϵ)P denotes the multiplication of the vector P ∈ R2 by the scalar (1 − ϵ). Note that
Bϵ((1− ϵ)P ) is tangent to S1(0) at P and that Nϵ(P ) = ∪0<r<ϵ Sr((1− r)P ). (See picture below.)

Define

B = {Nϵ(P ) | P ∈ S1(0), 0 < ϵ < 1/2} ∪ {Bρ(Q) | Q ∈ B, 0 < ρ < 1− ∥Q∥}

where ∥Q∥ denotes the Euclidean norm, and observe that B forms a basis for a topology on X.

a. Show that this topology is 1st countable and separable, but neither 2nd countable nor Lindelöf.

b. Describe the closure of Nϵ(P ) and prove that X is a regular space.

c. Fix P ∈ S1(0) and 0 < ϵ < 1/2. Define f : X → [0, 1] by:

f(x) =


1, if x ∈ X −Nϵ(P )

0, if x = 0

r/ϵ, if x ∈ Sr(P )− {P} and 0 < r < ϵ.

Show that f is continuous.

d. Prove that X is a completely regular space.
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Problem 2. Let X denote the following subspace of the Euclidean plane R2:

X = {(x, y) | xy =
1

n
, for some n ∈ N} ∪ Q× {0} ∪ {0} ×Q.

a. Is X locally-connected?

b. Describe the connected components and the quasicomponents of X.

Problem 3. Let X be a second countable, locally compact, Hausdorff space.

a. Show that the one-point compactification X+ of X is second countable.

b. Show that every subspace A ⊂ X is paracompact.

Problem 4. Let f : X → Y be a function from a space X into a locally compact, Hausdorff space
Y . Show that f is continuous if and only if the following holds: whenever Ŷ is a compact Hausdorff
space containing Y as a subspace, then the graph of f is a closed subspace of X × Ŷ .

Problem 5. Consider R3 with the Euclidean metric. Let S ⊂ R3 be a smooth oriented surface and
C ⊂ S a regular, oriented curve. Let SO(3) be the set of oriented orthonormal framings (or bases)
of R3. Construct a smooth moving frame e = (e1, e2, e3) : C → SO(3) as follows: given x ∈ C, let
e1(x) ∈ TxC be the oriented unit tangent vector to C; let e3(x) ∈ NxS be the oriented unit normal
vector to S; set e2(x) = e3(x)× e1(x) ∈ TxS.

a. Show that there exist 1-forms α, β, γ ∈ Ω1(C) on C such that

de1 = αe2 + βe3 , de2 = −αe1 + γe3 and de3 = −βe1 − γe2 .

b. Show that C is a geodesic if and only if α = 0.

c. Compute the curvature κ of C in terms of α, β, γ.

d. Let II denote the second fundamental form of S. Compute II(e1, e1) in terms of α, β, γ.

Problem 6. Let M be a smooth n–dimensional manifold. Let X1, . . . , Xk be point-wise linearly
independent vector fields on M , and let ω1, . . . , ωn−k be point-wise linearly independent 1-forms
such that

Ann{ω1, . . . , ωn−k} = spanC∞(M){X1, . . . , Xk} ,
where Ann denotes the annihilator in the dual space. Prove that [Xa, Xb] ≡ 0 modulo X1, . . . , Xk,
for all 1 ≤ a, b ≤ k, if and only if dωs ≡ 0 modulo ω1, . . . , ωn−k for all 1 ≤ s ≤ n− k.

Problem 7. Let f : R3 → R be given by f(x, y, z) = (x− 1)2 − yz. For which t ∈ R is f−1(t) an
embedded 2-dimensional submanifold of R3?

Problem 8. Let f : R2 → R be a smooth function such that f(x, y) = 0 for all (x, y) outside the
unit disk, i.e., for all (x, y) with x2 + y2 ≥ 1. Consider the surface in R3 given by the graph of f .
What can you say about the average Gauss curvature of the surface?

Problem 9. Consider the tangent bundle to the 3-sphere. Is it a smooth manifold? If so, what is
its dimension? Is it compact?

Problem 10. Either prove the projective plane RP2 is not orientable, or find an orientation for it.
(Hint: construct RP2 as the 2-sphere quotiented by the antipodal map.)
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