TEXAS A&M UNIVERSITY TOPOLOGY/GEOMETRY QUALIFYING EXAM January 2015

INSTRUCTIONS

- There are 8 problems. Work on all of them.
- Prove your assertions.
- Use a separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.
- 1. Let C be a subset of a topological space X.
 - (a) Prove that if C is connected, then the closure of C is connected.
 - (b) Prove or give a counter-example to the following statement: if C is connected, then the interior of C is connected.
- 2. Prove that a separable metric space (a metric space with a dense countable subset) is second countable.
- 3. Let \mathbb{R}_{ℓ} denote the real line \mathbb{R} with the lower limit topology i.e. the topology on \mathbb{R} with the basis consisting of all left-closed, right-open intervals [a, b).
 - (a) Find the closure of the set (a, b) in \mathbb{R}_{ℓ} ;
 - (b) Prove that \mathbb{R}_{ℓ} is not locally compact space.
- 4. (a) Give the definition of a quotient map $q: X \to Y$ between two topological spaces X and Y;
 - (b) Let $q: X \to Y$ be an open quotient map. Show that the space Y is Hausdorff if and only if the set $A = \{(x_1, x_2) \in X \times X | q(x_1) = q(x_2)\}$ is closed in the product space $X \times X$.
- 5. Let X be a copy of real line \mathbb{R} and let $\phi: X \to \mathbb{R}$ be $\phi(x) = x^5$. Taking ϕ as a chart, this defines a smooth structure on X. Prove or disprove each of the following statements:
 - (a) X (with this smooth structure) is diffeomorphic to \mathbb{R} .
 - (b) ϕ together with the identity map comprise a smooth atlas.

- 6. (a) Give the definition of an involutive smooth distribution in terms of its smooth local sections.
 - (b) One says that a p-form ω annihilates a smooth distribution D if $\omega(X_1, \ldots, X_p) = 0$ whenever X_1, \ldots, X_p are local sections of D. Based on the definition of the previous item prove that a smooth distribution D is involutive if an only if the following condition is satisfied: if η is any smooth 1-form that annihilates D on an open subset $U \subset M$, then $d\eta$ annihilated D on U.
 - (c) Given vector fields $X_1 = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}$ and $X_2 = \frac{\partial}{\partial x} + y \frac{\partial}{\partial w}$ in \mathbb{R}^4 with coordinates (x, y, z, w), can we find a two dimensional submanifold M of \mathbb{R}^4 such that X_1 and X_2 are tangent to M at every point of M? Prove your answer.
 - (d) With the same notations as in the previous item, can we find a two dimensional submanifold N such that X_1 is tangent to N at every point of N? Prove your answer.
- 7. (a) Give a definition of an embedded submanifold of a manifold N.
 - (b) Let $F: M \mapsto N$ be a smooth map between manifolds M and N. Give the definitions of a regular point and of a regular value of F.
 - (c) Recall that a matrix A with real entries is orthogonal if $A^TA = I$, where I is the identity matrix. Prove that the set O(n) of all $n \times n$ orthogonal matrices is an embedded submanifold of the space $M(n, \mathbb{R})$ of all $n \times n$ matrices with real entries and find the dimension of this submanifold.
- 8. (a) Let \mathbb{R}^2 have coordinates (u, v) and fix a constant a > 0. The *catenoid* is the image of the mapping $f : \mathbb{R}^2 \mapsto \mathbb{R}^3$ defined by $f(u, v) = (a \cosh v \cos u, a \cosh v \sin u, av)$. Compute the mean curvature and the Gaussian curvature of the catenoid.
 - (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a smooth function such that f(x,y) = 0 for all (x,y) outside the unit disk, i.e., for all (x,y) with $x^2 + y^2 \ge 1$. Consider the surface S in \mathbb{R}^3 given by the graph of f over the disk $x^2 + y^2 \le 2$. What can you say about the integral of the Gaussian curvature over S? Prove your answer.