Representations of Fermionic Modular Cateqgories from Topological Quantum
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Quantum computing offers benefits over traditional bit-arithmetic computing due to the use of Qubits,
which provide more computational power by "using the two characteristic attributes of quantum
mechanics — superposition and entanglement'|1]. However, quantum particles are highly prone to
environmental interference. Topological Quantum Computing is a method of quantum computation
which focuses on encoding information in topological invariants. By using topological symmetries,
interference can be mitigated since the general structure, not distance and angle degree, decides
equivalence in topological structures.

Project Overview:
e Generate S and T matrix representations

e Investigate resulting matrix group using magma algebraic software[2]

e Characterize and categorize resulting group from gathered data

The matrix representation of FMCs and MMCs, are generated by the use of an
S and T matrix which take on a unique form for each -category. 3| supplies the
lsing theory containing the desired Fermion which is tensored with some base group:
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e Structure is based on the use of Zn cyclic groups, an example provided in [3]

e Derived trom the Kronecker product of the /5,4 theory with the objects ot the FMC

e Reduced form used based on entries commuting in:
S(xy) = Txy) (1)

o /i where K = 8n for n € Z™, always contains a non-trivial Boson
e Results in square matrices of dimension %K

The S matrix has structure:
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and C a zero square matrix of dimension %K
The T matrix is a diagonal square matrix of dimension %K with entries:
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e Structure is based on Type B SO(m), categories as described in (4]

e For SO(m), where m = 2r + 1 for r € Z™", S Matrix is square matrix of dimension r + 4

e The generalized S matrix structure is:
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e The T matrix is a diagonal square matrix of dimension r 4+ 4 with entries:
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e Improve the Code

e Investigate other examples from [3]
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Ex: Fermionic Modular Category algorithm:

1. procedure GENERATE FMC MAaTrix GRoOUP

2: Input: N a positive integer

3: K=8xN

4: /Field < Cyclotomic Field with Kth root of unity
5: Set root to ZField’s root element

6: A Matrix:

7: A is Zero square matrix of dimension %K
& for iin[0,5) do

o for jin[0,5) do

10: Ali,j] = root?i*2J

11: B Matrix:

12: B is Zero square matrix of dimension %K
13 for iin[0,5) do

14: for j in [%%K) do

15: Bli,j] = V2 root2*(2j+1)

16: S Matrix:

17: S is Zero square matrix of dimension %K

18: S =A+ B + Transpose of B
. 1
19: Scale S by 7R

20: | Matrix:

21: T is Zero square matrix of dimension %K

. fF K
22: for i in [0,5) do )
23: T[i,i] = root?*
24 for jin[5,2K) do

; 2

25: T[j,j] = root(/+1)°+8
26: Generate Group:
27: A < Matrix Group generated from S and T?

Fermionic Modular Category groups

N Z Quotient Chain Order(Factored) Order Solvable Nilpotent Special

1 8 32,8,4,1 29 32 False True True
2 16 256,16, 8,4, 1 28 256 True True False
3 24 18432,1152,576, 288 211 .32 18432  True False —
4 32 2048,64,16,8,4,1 211 2048 True True False
5 40 921600* 212,32 .52 921600 —- False -
6 48 147456,2304,1152,576,288 214. 32 147456  True False _
7 56 7225344* 214.32. 72 7225344 _ _
8 64 65536* 216 65536  True _ False
9 72 13436928* 211,38 13436928 True False -
Metaplectic Modular Category groups
I

- SO(n) Z Quotient Chain Order(Factored) Order

13 24 768,96,48,12 28 . 3] 768  True
25 40 1920, 480, 240, 60 27 .31 .51 1920  True
37 56 10752,1344,672,168  29.31.71 10752 True
49 72 10368,2592,1296,324 27 .3% 10368 False
5 11 88 42240,5280,2640,660 28.31.51.111 42240 True
6 13 104 34944,8736,4368,1092 211.32.5] 34944 True
715 120 92160,5760,2880,720 211.32.5] 92160 False
8 17 136 78336,19584,9792,2448 29 .32.17] 78336 True
919 152 218880* 28.32.51.191 218880 —-*

“denotes projected result due to computational limitations
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