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Elliptic Curves

Elliptic Curves are interesting objects in mathematics
Useful in cryptography
Related to two of the Clay Mathematics Millennium Prize Problems

Elliptic curves are generally written in the form E : y2 = x3 + ax2 + b

We are particularly interested in the rational solutions of elliptic curves
It has been proven that these solutions form a group E (Q)
We know that E (Q) = Etors × Zr where Etors is a finite group
The number of copies of Z contained in E (Q), r , is called the rank of
the elliptic curve
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L-fucntions

There are L-functions associated with elliptic curves
We are primarily interested in the central values of these L-functions
For a given elliptic curve E , the central value of the L-function is
defined as

L(1/2,E ) = (1 + ωE )
∞∑
n=1

λE (n)√
n

exp

(
−2πn√
NE

)
L-functions are useful for understanding other properties of elliptic
curves

For example, Birch and Swinnerton-Dyer conjecture that the rank of an
elliptic curve is equal to its analytic rank (the smallest value of r such
that L(r)(1/2,E ) 6= 0

Calculating central values allows us to determine whether an elliptic
curve has rank 0
Unfortunately, since L(1/2,E ) is defined with an infinite series, it is
difficult to calculate efficiently
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Methodology

My research involves developing a more efficient method for
calculating the central values of elliptic curves

Improves upon the methods presented in [HY15]

Based upon the Birch and Swinnerton-Dyer conjecture which states
that for an elliptic curve of rank 0,

L(1/2,E ) =
|XE |ΩEcE
|Etors|2

(1)

Algorithm follows the following steps:
1 Approximate the value of L(1/2,E ) by summing the first δ

√
NE terms

for some δ
2 Use the Birch and Swinnerton-Dyer conjecture to calculate
|XE ,approx| = |Lapprox(1/2,E)|Etors|2

ΩE cE
|

3 Since |XE | must be an integer, use the approximation |XE ,approx| to
recover the exact value of |XE |

4 Use new value of |XE | to calculate L(1/2,E ) = |XE |ΩE cE
|Etors|2
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Theoretical Support
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Main Heuristic

Heuristic 2.1.

Let δ ≥ 1
24π logNE − C2 log logNE for some constant C2 such that

4πC2 < 1. On average, as the conductor approaches infinity, we expect
||Xapprox,E | − |XE || < 1/2.

Reasoning:
We would like to show |XE ,tail| = ||Xapprox,E | − |XE || < 1

2

Birch and Swinnerton-Dyer conjecture:|XE | = L(1/2,E)|Etors|2
ΩE cE

By our definition: |Xapprox,E | =
Lapprox(1/2,E)|Etors|2

ΩE cE

Therefore we can write |XE ,tail| = |Ltail(1/2,E)|Etors|2
ΩE cE

|
Need to understand Ltail before we continue
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Understanding Ltail

Recall that Ltail(1/2,E ) = 2
∑

n>δ
√
NE

λE (n)√
n
e
−2πn√

NE

Ltail is difficult to bound for a generic elliptic curve
This is partially due to erratic behavior λE (n)

Because of this, we will instead consider the average behavior of
Ltail(1/2,E ) over a family of elliptic curves
In other words, we will examine 1

4|A||B|
∑
|a|≤A
|b|≤B

(Ltail,Ea,b
)2
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Understanding Ltail

In order to understand 1
4|A||B|

∑
|a|≤A
|b|≤B

(Ltail,Ea,b
)2, we need to understand

what will happen when we sum λEa,b
(m)λEa,b

(n) over our family
Using techniques from [You07] and simplifying assumptions and that
are primarily modeled after those in [CFK+02], we can show:

Heuristic 2.2.

Let A,B,m, n ∈ Z such that A,B,m, n > 0. Then

1
4|A||B|

∑
|a|≤A
|b|≤B

λEa,b
(m)λEa,b

(n)

is approximately 1 when m = n and 0 otherwise.
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Understanding Ltail

Since Ltail(1/2,E ) = 2
∑

n>δ
√
NE

λE (n)√
n
e
−2πn√

NE , we can write

1

4|A||B|

∑
|a|≤A
|b|≤B

(Ltail,Ea,b
)2 ≈ 4

∑
n1≥δ

√
XA,B

∑
n2≥δ

√
XA,B

e
−2π(n1+n2)/

√
XA,B

√
n1n2

1

4|A||B|

∑
|a|≤A
|b|≤B

λEa,b
(n1)λEa,b

(n2)

where XA,B is the average of NE over the family
Notice the inner sum can be rewritten using Heuristic 2.2

1

4|A||B|

∑
|a|≤A
|b|≤B

(Ltail,Ea,b
)2 ≈ 4

∑
n≥δ

√
XA,B

e

−4πn√
XA,B

n

Since n ≥ δ
√
XA,B ,

4
∑

n≥δ
√

XA,B

e

−4πn√
XA,B

n
≤

4

δ
√

XA,B

∑
n≥δ

√
XA,B

e

−4πn√
XA,B
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Understanding Ltail

Approximating via integration gives us

4

δ
√

XA,B

∑
n≥δ

√
XA,B

e

−4πn√
XA,B ≤

4e−4πδ

δ
√

XA,B

+ 4
∫ ∞
δ
√

XA,B

e

−4πt√
XA,B dt

=
4e−4πδ

δ
√

XA,B

+
e−4πδ

πδ

For large XA,B , the first term is small. Thus we get a second heuristic:

Heuristic 2.3.

lim
A,B→∞

1
4|A||B|

∑
|a|≤A
|b|≤B

(Ltail ,Ea,b
)2 ≤ e−4πδ

πδ
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Main Heuristic

Now that we understand Ltail, we can return to our main heuristic:

Heurisitic 2.1.
Let δ ≥ 1

24π logNE − C2 log logNE for some constant C2 such that
4πC2 < 1. On average, as the conductor approaches infinity, we expect
||Xapprox,E | − |XE || < 1/2.

Reasoning:

We already determined |XE ,tail| = |Ltail(1/2,E)|Etors|2
ΩE cE

|
|Etors| is bounded by a constant
ΩE � N

−1/12
E by [Wat08]

Ltail ≤
√

e−4πδ

πδ by 2.3

Therefore we estimate that, for large conductor,

|XE ,tail| ≤
√

e−4πδ
πδ
|Etors|2

N
−1/12
E cE
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Main Heuristic

Therefore we want to understand how δ must grow so that√
e−4πδ
πδ
|Etors|2

N
−1/12
E cE

< 1
2 for large conductors

We rewrite this as NE
1/6e−4πδ

4πδ < 1
16|Etors|4 (since cE ≥ 1)

When δ ≥ 1
24π logNE − C2 log logNE for some constant C2:

e−4πδ ≤ e
−4π( 1

24π log NE−C2 log log NE )

= N
−1/6
E

(log NE )4πC2

Therefore for large NE :

NE
1/6e−4πδ

4πδ
<

(log NE )4πC2

1
6 log NE − 4πC2 log log NE )

When 4πC2 < 1 then for large NE this will approach 0, and thus be
smaller than 1

2 for large enough conductor.
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Empirical Support
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Empirical Support

We can also provide empirical support that our method generally works
In order to test our method, we implemented the algorithm in
PARI/GP
We tested the method on elliptic curves with maximum conductors on
the order of 1010 and 1011

In particular, we tested on all elliptic curves E : y2 = x3 + ax2 + b
where 630 ≤ |a| ≤ 900 and 10000 ≤ |b| ≤ 14000 and E is a global
minimal model

Theoretic results tell us that we should pick

δ ≥ 1
24π

logNE − C2 log logNE

=
1

24π
log 1011 − 1

8π
log log 1011

≈ 0.2

(where we chose N = 1011 and C2 = 1
8π ) to handle the average case

We use δ = 0.5 in order to hopefully account for both the average
case and outliers
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Empirical Support - Average Case Results - |Xtail|

By Heuristic 2.1, since we took a large enough δ, we expect |Xtail| to
be well under 1

2

Figure 1: Distribution of |Xtail| Values for Given Elliptic Curves
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Empirical Support - Worst Case Results

Since our theoretical results only discussed the average case, we also
want to consider what happens in the worst case

Figure 2: Conductor vs |Xtail| for Given Elliptic Curves
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Empirical Support - Analysis of Outliers

We are interested in understanding what causes |Xtail| to be large so
that we can correct for it when we expect |Xtail| to be much larger
than the average case analysis indicates

Since |XE ,tail| = |Ltail(1/2,E)|Etors|2
ΩE cE

|, we expect that |XE ,tail| is large
when either |Ltail| or |Etors| is large, or when ΩE or cE is small
Based on data, it appears that |Ltail| is the most significant factor
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Empirical Support - Analysis of Outliers

Figure 3: Ltail vs |Xtail| for Given Elliptic Curves

|XE ,tail| increases as |Ltail| increases
Since ΩE remains relatively constant over the family of Elliptic curves
and both cE and |Etors| take on discrete values, each band represents a
different value of |Etors|

cE
19 / 23



Empirical Support - Analysis of Outliers

Leads to question of whether we can predict when an elliptic curve will
have large value of |Ltail|

Figure 4: Conductor vs |Ltail|
Figure 5: Real Period vs
|Ltail| Figure 6: L vs |Ltail|

Figure 7: Discriminant vs
|Ltail|

Figure 8: Tamagawa
Number vs |Ltail|

Figure 9: Torsion Group Size
vs |Ltail|
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Empirical Support - Analysis of Outliers

Figure 10: L vs |Ltail| for Given Elliptic Curves

High values of L seem to correlate with large |Ltail|
To account for this, we can adjust our method to use larger δ if our
initial approximation of L is unusually large

Unfortunately, there are also a few outliers when L is close to 0.
Since most elliptic curves have L close to 0, this is an unhelpful
characterization
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Conclusion

Our method of calculating central values appears to work both
theoretically and empirically
Using δ = 0.5 seems to work well for elliptic curves with conductors on
the order of 1010 and 1011

This halves the amount of time it would take to compute using the
method presented in [HY15].

In addition, we have calculated central values for elliptic curves of
large conductor that were previously uncalculated

This data can be used to explore other facets elliptic curves

Future work could focus on understanding when an elliptic curve can
be expected to have a large |Ltail|
It would also be useful to extend this to larger derivatives of the
L-function so that we can distinguish between elliptic curves of larger
rank
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