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Introduction
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Elliptic Curves

o Elliptic Curves are interesting objects in mathematics

o Useful in cryptography
o Related to two of the Clay Mathematics Millennium Prize Problems

o Elliptic curves are generally written in the form E : y2 = x3 4+ ax> + b
@ We are particularly interested in the rational solutions of elliptic curves

o It has been proven that these solutions form a group E(Q)
o We know that E(Q) = Eiors X Z" where Eiqs is a finite group
e The number of copies of Z contained in E(Q), r, is called the rank of

the elliptic curve
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@ There are L-functions associated with elliptic curves
@ We are primarily interested in the central values of these L-functions

o For a given elliptic curve E, the central value of the L-function is
defined as

L(1/2,E)=(1 +WE)Z )\%1) exp (?/2NLEn>
n=1

@ L-functions are useful for understanding other properties of elliptic
curves

e For example, Birch and Swinnerton-Dyer conjecture that the rank of an

elliptic curve is equal to its analytic rank (the smallest value of r such
that L(D(1/2,E) #0
@ Calculating central values allows us to determine whether an elliptic
curve has rank 0

e Unfortunately, since L(1/2, E) is defined with an infinite series, it is
difficult to calculate efficiently
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Methodology

@ My research involves developing a more efficient method for
calculating the central values of elliptic curves
o Improves upon the methods presented in [HY15]

@ Based upon the Birch and Swinnerton-Dyer conjecture which states
that for an elliptic curve of rank 0,

|HIg|Qece

L(1/27 E): |Et ’2
ors

(1)

@ Algorithm follows the following steps:
© Approximate the value of L(1/2, E) by summing the first 61/Ng terms

for some &
@ Use the Birch and Swinnerton-Dyer conjecture to calculate
_ [ Lapprox(1/2,E)| Ecors|?
11 appro] = [ el 2 BNl

© Since |IIg| must be an integer, use the approximation | spprox| to
recover the exact value of |IIg|
@ Use new value of |IIIg| to calculate L(1/2,E) = %
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Theoretical Support
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Let 6 > ﬁ log Ne — G loglog Ng for some constant C, such that
47 Cy < 1. On average, as the conductor approaches infinity, we expect
| M approx,| — [MLg|| < 1/2.

Reasoning:
e We would like to show [IIIg il = ||[Mapprox,e| — [IHEg|| < %
2
@ Birch and Swinnerton-Dyer conjecture:|IIIg| = %

Lapprox(1/2yE)|Etors‘2

e By our definition: |I,pp0x,£| = Qren
@ Therefore we can write [IIIg 5| = |%l
@ Need to understand L., before we continue

7/23



Understanding Liy;

—27n
@ Recall that Li,;(1/2,E) =2 > )‘ET(:)e\/@
n>8v/Ng

Li,; is difficult to bound for a generic elliptic curve
e This is partially due to erratic behavior Ag(n)

Because of this, we will instead consider the average behavior of
Liaii(1/2, E) over a family of elliptic curves

. . 1 ) 2
In other words, we will examine TAE] > (LuailE,,)
al<
bl<B
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Understanding Liy;

1 _ 2
@ In order to understand TATE] >~ (LtailE, )", we need to understand
[a|<A
[p|<B

what will happen when we sum Ag, ,(m)Ag, ,(n) over our family

@ Using techniques from [You07] and simplifying assumptions and that
are primarily modeled after those in [CFK*02], we can show:

Let A,B, m,n € Z such that A,B, m,n > 0. Then

1
A A
4’A||B| Z Ea,b(m) Ea,b(n)
|a|<A
|b|<B

is approximately 1 when m = n and 0 otherwise.
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Understanding Liy;
—27n
e Since Lyji(1/2,E) =2 > 2e(n)

NG eVNE we can write
n>5\/ NE
! > (Leai Y ra
4AIBl G2, Bt T
[b|<B

e*27r(n1+nz)/ Xa,B
> >
n126,/Xa g 2268, /Xa 8

1
\/nin2

alAllB] |

D0 Xe, ,(m)Ag, ,(n2)
a| <A

IbI<B
where Xy g is the average of Ng over the family
@ Notice the inner sum can be rewritten using Heuristic 2.2

1

—47mn
2
(Leait,E, )~ =~ 4
aAB] 2z,

\VXa,B
Z e
[b|<B

N T
e Since n > 6/XaB,

—A4nn

VXAB

g/

n>6. /XA g

Bl
IN
»

—4mn

E\/XA,B

5, /Xa

n>6

g/

:

Xa,B
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Understanding Liy;

@ Approximating via integration gives us

—A4rnt
X
A,B dt

—4mn

4 N 4e—479 /ww
e =< + 4 e
5,/XA,B NZJ% ) Xa,B 5\/)T,B

4e—47r6 e—47r6

= + —
5\/Xa8 ™

o For large Xa g, the first term is small. Thus we get a second heuristic:

1 . 67471'5
lim —— Leai <
A.B 500 4]A||B] 2 (L) < =5
la<A
|b|<B
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Now that we understand L.,;, we can return to our main heuristic:

Let 0 > 55— Iog Ng — G loglog Ng for some constant C, such that
Ay < 1. On average, as the conductor approaches infinity, we expect
| ML approx,g] — Mgl| < 1/2.

Reasoning:

Lta||(1/2 E)|Etor5|2 ‘
Qpce

o We already determined [T y,ii| = |
o |Eiors| is bounded by a constant
o Qp = Nz '/'? by [Wat08]
o Lo <4/~ by 23
@ Therefore we estimate that, for large conductor,
—4W§
|Etors‘

|HIE tail| < W
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° Therefore we want to understand how § must grow so that

471'5
S el 1 g duct
TZE 5 or large conauctors
E

NE1/6e—47r5

. . 1
o We rewrite this as s < T6/Eem

@ (since cg > 1)

@ When § > ﬁ log Ng — (5 log log Ng for some constant Gs:

640 < o™ 4 (52— log Ng — Ca log log Ni)

— rrde
= N7 Y/®(1og Ng)*™ 2

@ Therefore for large Ng:

Ngl/6e—4ms (log Ng)4™C2

478 2 log Ng — 4 C3 log log Ni)

@ When 47 C, < 1 then for large Ng this will approach 0, and thus be
smaller than % for large enough conductor.
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Empirical Support
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Empirical Support

@ We can also provide empirical support that our method generally works
@ In order to test our method, we implemented the algorithm in
PARI/GP
o We tested the method on elliptic curves with maximum conductors on
the order of 10'° and 10'!
o In particular, we tested on all elliptic curves E : y?> = x3 +ax?> + b
where 630 < |a] <900 and 10000 < |b| < 14000 and E is a global
minimal model

@ Theoretic results tell us that we should pick
1
0 2 — Iog Ng — G, log log Ng

_ L og10m — Lioglog 10
Y og 10 87TogogO

~ 0.2

(where we chose N = 101 and G = 3 ) to handle the average case
@ We use § = 0.5 in order to hopefully account for both the average

case and outliers
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Empirical Support - Average Case Results - [T

@ By Heuristic 2.1, since we took a large enough ¢, we expect |IIl;;| to
be well under %

Figure 1: Distribution of |IIl,;| Values for Given Elliptic Curves
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Empirical Support - Worst Case Results

@ Since our theoretical results only discussed the average case, we also
want to consider what happens in the worst case

Figure 2: Conductor vs |Il,;| for Given Elliptic Curves
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Empirical Support - Analysis of Outliers

@ We are interested in understanding what causes |I1;,;| to be large so
that we can correct for it when we expect |IIl,;| to be much larger
than the average case analysis indicates

e Since |Ig 4] = |L“"'(1gﬂ] we expect that |[IIIg | is large
when either |Ly,;| or |Etors| is large, or when Qg or cg is small

@ Based on data, it appears that | L,/ is the most significant factor
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Empirical Support - Analysis of Outliers

Figure 3: Ligj vs |,y for Given Elliptic Curves

® |III£ 1,iI| increases as |Ly,jl| increases

@ Since Qg remains relatively constant over the family of Elliptic curves
and both cg and |Eiors| take on discrete values, each band represents a
different value of %
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Empirical Support - Analysis of Outliers

@ Leads to question of whether we can predict when an elliptic curve will
have large value of |Lij|

. Figure 5: Real Period vs
Figure 4: Conductor vs |Lis| ILtga'|| Figure 6: L vs |Lyai]
1

Figure 7: Discriminant vs Figure 8: Tamagawa Figure 9: Torsion Group Size
[ Leail Number vs | L vs | Leail
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Empirical Support - Analysis of Outliers

Figure 10: L vs |Ly,i| for Given Elliptic Curves

@ High values of L seem to correlate with large |Li,;]
e To account for this, we can adjust our method to use larger § if our
initial approximation of L is unusually large
@ Unfortunately, there are also a few outliers when L is close to 0.
@ Since most elliptic curves have L close to 0, this is an unhelpful

characterization
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Conclusion

@ Our method of calculating central values appears to work both
theoretically and empirically

@ Using § = 0.5 seems to work well for elliptic curves with conductors on
the order of 10'° and 10!

e This halves the amount of time it would take to compute using the
method presented in [HY15].

@ In addition, we have calculated central values for elliptic curves of
large conductor that were previously uncalculated

e This data can be used to explore other facets elliptic curves

e Future work could focus on understanding when an elliptic curve can
be expected to have a large |L,]

@ It would also be useful to extend this to larger derivatives of the
L-function so that we can distinguish between elliptic curves of larger
rank
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