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Kurimoto-Sivashinsky Equation



The Question

» Are numerical solutions to pattern-forming partial
differential equations sensitive to time stepping
methods?

» The Kurimoto-Sivashinsky Equation is a good model
equation to study for this question



Has analogs in atmospheric science

90

75

45

Planetccentric attude {degrees)
="

Rossby number (x 109
4 B

12

S0 0 8 100
Wind speed (m s°)

150




Has analogs in atmospheric science
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What makes it so interesting?
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Assume solution Is periodic on interval L (common
assumption in atmospheric models)

Given initial condition u(x, 0) = uy(x)
Divide L in to N parts ( so N Is the spatial resolution)

N times
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For large values of L (> 12m), equation produces chaotic
solutions

For smaller values of L solutions have a wide array of
structure
L

Define L = —
2TT




Solutions are very sensitive to L

» Initial condition a randomized wave with small (10~>)
amplitude, L = 3.6398,N = 128




Solutions are very sensitive to L

» Increase L by 0.0001 with exact same initial
condition
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Numerical Methods

» Separate the spatial (x) and temporal (t) derivatives
so it looks like

ou  ou 0°u 0J*u
ot "9x  0x?  ox*
» Use “pseudo-spectral” method for the spatial
derivatives
» Time stepping method for time derivative




Solving the spatial derivatives

» If u(x, t,,) is known, then we can use the Discrete
Fourier Transform to approximate u(x) as,

~  2mk
» Where k ==
» So differentiation becomes simple multiplication
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Solving the spatial derivatives

» For the nonlinear term, since u(x, t,;) IS known and
ou _ 10u?
dx 2 9x'
2
» Can calculate u? and then proceed as with the linear

terms.

uZ

» Letv =
2

» So from the original equation,
dou  dv 0J%u 0J%u

ot Ox 0x2 Ox*




Solving the spatial derivatives

» For the nonlinear terms, since u(x, t,;) IS known and
ou 10u?

uﬂ 2 ox
2
» Can calculate u? and then proceed as with the linear

terms.
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Spectral view of the equation

» From the spectral view of the equation,
N

=—22_ lev(k)e‘kx+ Z; N(k2 k) ai(k)etk>

2
» The 2" derivative is a forcing term for low wave
numbers ([k] > 1)
» The 4t derivative is a source of dissipation in the

high wave numbers
» The nonlinear term transfers energy from low to high

wave numbers
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Spectral view of the equation
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Time-Stepping methods

» Basic method:
Leapfrog

» Two modifications

1. Leapfrog + periodic Predictor-Corrector,
2. Robert-Asselin-Williams (RAW) filter

» How do these two methods compare in the formation
of structure in this equation?



Leapirog time-stepping scheme

» The leapfrog scheme (centered difference) is an
approximation for the time derivative

U(x,ty+At)—u(xty,—At) _ ou _
> AL ~ ot e, — f(U(x, tn))

» Where the right hand side is treated as a function f
» This method is unstable
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Predictor Corrector method

» Stability can be improved even more by restarting
every 25 steps in time.

» When starting from a single initial condition u(t,),
need u(t, + At) to use leapfrog again.

» Use Forward Euler method* to calculate u (to + %)

» Use leapfrog on u(ty,) and u (to -+ %) to calculate
u(t, + At) then continue as before

Ju

u(t, + At) — u(ty,)
» *Forward Euler: ;| =

At

tn



Robert-Asselin-Williams Filter

» A separate improvement on the basic leapfrog

scheme is the RAW filter
u(x, t, + At) — u(x, t, — At)

— = f(uCx, t)
» Where,
S v(l—a)
u(x, t,) =ulx,t,) + > [u(x, t,, — 2At) — 2u(x, t,, — At) + u(x, t,)]
» And,

va
u(x, t, — At) = u(x, t, — At) — - [u(x, t, — 2At) — 2u(x, t, — At) + u(x, t,)]



Robert-Asselin-Williams Filter

» What this is saying is we compute the next time step
» Then push u(t,) and u(t,, + At) towards the




What is the problem?
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What is the problem?
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Compared to more accurate method

Leapfrog Pred. Cor., Lhat = 3, N = 128RAW

—

0 50 100 150 200 250 300 350 400 450 500
TIME
R.ANVY. Filter, Lhat =3, N = 128

o 50 100 150 200 250 300 350 400 450 500
TIME
RKK4 Lhat=3 N=128

o 50 100 150 200 250 300 350 400 450 500
TIME



Compared to more accurate method

Leapfrog Pred. Cor., Lhat = 5.9, N = 128RAW
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Conclusion: Time-stepping method matters

» 4 order Runge-Kutta method takes time and memory
» Can also be difficult to implement in existing code

» In general RAW gives a better idea of the behavior of the
solution than the Predictor Corrector method

» Itis also very simple to update existing code

» Williams has produced a more general filter to give up to
7t order accuracy

» When looking at the development of structure time-
stepping matters!



