Math142 Lecture Notes

4.2 - Derivatives of Logarithmic Functions

<table>
<thead>
<tr>
<th>Derivative Rules for Logarithmic Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• For $f(x) = \ln x$, with $x > 0$, $f'(x) = \frac{d}{dx}(\ln x) = \frac{1}{x}$.</td>
</tr>
<tr>
<td>• If g is a differentiable function of x and the range of g is $(0, \infty)$, the derivative of $h(x) = \ln[g(x)]$ is $h'(x) = \frac{g'(x)}{g(x)}$.</td>
</tr>
<tr>
<td>• If g is a differentiable function, where the range of g is $(0, \infty)$, then the derivative of $f(x) = \log_b[g(x)]$ is $f(x) = \frac{g'(x)}{g(x) \cdot \ln b}$.</td>
</tr>
</tbody>
</table>

Example 1: Differentiate and simplify (unless otherwise stated) the following.

(a) $f(x) = 5 - 2\ln x$

(b) $f(x) = \left(\frac{1}{\sqrt{x^2}}\right)(\ln x)$

(c) $f(x) = \ln (2x^3 - 7)$
(d) \(f(x) = (\ln x)^3 \)

(e) \(f(x) = [\ln(x^4 + 5x)]^2 \)

(f) \(f(x) = \frac{3x^2 - 5x + 6}{\ln(4x^2 + 1)} \) \(\text{ (do not simplify) } \)

(g) \(f(x) = \log_8 x \)

(h) \(f(x) = \left[\log_2(x^5) \right] \left(\log_3 x \right) \)
Example 2: Given \(f(x) = (8x^2)(\ln x) \):

(a) Find the derivative, \(f'(x) \).

(b) Find the equation of the line tangent to the graph of \(f(x) \) at \(x = 2 \).

Example 3: The average expenditure for a new domestic car in the United States can be modeled by

\[
 f(x) = 15.302 + 1.685 \ln(x) \quad 1 \leq x \leq 7
\]

where \(x \) represents the number of years since 1980 and \(f(x) \) represents the average expenditure (in thousands of dollars) for a new domestic car.

(a) Find the derivative, \(f'(x) \).

(b) Find the equation of the line tangent to the graph of \(f(x) \) when \(x = e \).
Example 4: Note the difference in finding the derivative of each of the following functions:

(a) \(f(x) = \ln x^3 \)

(b) \(g(x) = (\ln x)^4 \)

Summary: Derivative Rules for Logarithmic Functions

- \(y = \ln x, \) with \(x > 0, \) \(y' = \frac{1}{x}. \)
- \(y = \ln(\text{mess}), \) with \(\text{mess} > 0, \) \(y' = \frac{\text{mess}'}{\text{mess}}. \)
- \(y = \log_b x, \) and \(x > 0, \) \(y' = \frac{1}{x \cdot \ln b}. \)
- \(y = \log_b(\text{mess}), \) and \(\text{mess} > 0, \) \(y' = \frac{\text{mess}'}{\text{mess} \cdot \ln b}. \)

Note: \(\text{mess} \) is an expression containing \(x \)'s