Chapter 9

Canonical Forms

1 Nilpotent Operators

If a linear transformation L mapping an n-dimensional complex vector space into itself has n linearly independent eigenvectors then the matrix representing L with respect to the basis of eigenvectors will be a diagonal matrix. In this chapter we turn our attention to the case where L does not have enough linearly independent eigenvectors to span V. In this case we would like to choose an ordered basis of V for which the corresponding matrix representation of L will be as nearly diagonal as possible. To simplify matters in this first section we will restrict ourselves to operators having a single eigenvalue λ of multiplicity n. It will be shown that such an operator can be represented by a bidiagonal matrix whose diagonal elements are all equal to λ and whose superdiagonal elements are all 0’s and 1’s. To do this we require some preliminary definitions and theorems.

Recall from Section 2 of Chapter 5 that a vector space V is a direct sum of subspaces S_1 and S_2 if and only if each $v \in V$ can be written uniquely in the form $x_1 + x_2$ where $x_1 \in S_1$ and $x_2 \in S_2$. This direct sum is denoted by $S_1 \oplus S_2$.

Lemma 9.1.1. Let $B_1 = \{x_1, \ldots, x_r\}$ and $B_2 = \{y_1, \ldots, y_k\}$ be disjoint sets which are bases for subspaces S_1 and S_2, respectively, of a vector space V. Then $V = S_1 \oplus S_2$ if and only if $B = B_1 \cup B_2$ is a basis for V.

Proof. Exercise

Definition. Let L be a linear operator mapping a vector space V into itself. A subspace S of V is said to be invariant under L if $L(x) \in S$ for each $x \in S$.

For example if L has an eigenvalue λ and S_λ is the eigenspace corresponding to λ then S_λ is invariant under L since $L(x) = \lambda x \in S_\lambda$ for each $x \in S_\lambda$.

If S is an invariant subspace of L then the restriction of L to S which we will denote $L_{[S]}$ is a linear operator mapping S into itself.

Lemma 9.1.2. Let L be a linear operator mapping a vector space V into itself and let S_1 and S_2 be invariant subspaces of L with $S_1 \cap S_2 = \{0\}$. If $S = S_1 \oplus S_2$
then S is invariant under L. Furthermore if $A = (a_{ij})$ is the matrix representing $L_{[S_1]}$ with respect to the ordered basis $[x_1, \ldots, x_r]$ of S_1 and $B = (b_{ij})$ is the matrix representing $L_{[S_2]}$ with respect to the ordered basis $[y_1, \ldots, y_k]$ of S_2 then the matrix C representing $L_{[S]}$ with respect to $[x_1, \ldots, x_r, y_1, \ldots, y_k]$ is given by

\begin{equation}
C = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1r} & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{r1} & \cdots & a_{rr} & 0 & 0 \\ 0 & 0 & b_{11} & \cdots & b_{1k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & b_{k1} & b_{kk} & \end{bmatrix}
\end{equation}

Proof. We should first note that since $S_1 \cap S_2 = \{0\}$ it follows that $x_1, \ldots, x_r, y_1, \ldots, y_k$ are linearly independent and hence form a basis for a subspace S of V. By Lemma 9.1.1, $S = S_1 \oplus S_2$ so that it really does make sense to speak of a direct sum of S_1 and S_2. If $s \in S$ then there exist $x \in S_1$ and $y \in S_2$ such that $s = x + y$. Since $L(x) \in S_1$ and $L(y) \in S_2$ it follows that

$$L(s) = L(x) + L(y)$$

is an element of $S_1 \oplus S_2 = S$. Therefore S is invariant under L.

Let $s^{(1)}_i = L(x_i)$ for $i = 1, \ldots, r$ and $s^{(2)}_j = L(y_j)$ for $j = 1, \ldots, k$. Since each $s^{(1)}_i$ is in S_1 and each $s^{(2)}_j$ is in S_2 it follows that

$$L_{[S]}(x_i) = s^{(1)}_i + 0 = a_{11}x_1 + a_{21}x_2 + \cdots + a_{ri}x_r + 0y_1 + \cdots + 0y_k$$

and hence the ith column of the matrix C representing $L_{[S]}$ will be

$$c_i = (a_{11}, a_{21}, \ldots, a_{ri}, 0, \ldots, 0)^T$$

Similarly

$$L_{[S]}(y_j) = 0 + s^{(2)}_j = 0x_1 + \cdots + 0x_r + b_{1j}y_1 + \cdots + b_{kj}y_k$$

and hence c_{j+r} is given by

$$c_{j+r} = (0, \ldots, 0, b_{1j}, \ldots, b_{kj})^T$$
Thus the matrix C representing $L_{[S]}$ with respect to $[x_1, \ldots, x_r, y_1, \ldots, y_k]$ will be of the form (9.1).

It is possible to have a direct sum of more than two matrices. In general if S_1, S_2, \ldots, S_r are subspaces of a vector space V then $V = S_1 \oplus \cdots \oplus S_r$ if and only if each $v \in V$ can be written uniquely as a sum $s_1 + \cdots + s_r$ where $s_i \in S_i$ for $i = 1, \ldots, r$.

Using mathematical induction one can generalize both of the lemmas to direct sums of more than two subspaces. Thus, if each subspace S_i has a basis B_i and the B_i’s are all disjoint, then $V = S_1 \oplus \cdots \oplus S_r$ if and only if $B = B_1 \cup B_2 \cup \cdots \cup B_r$ is a basis for V. If S_1, \ldots, S_r are invariant under a linear transformation L and $S = S_1 \oplus \cdots \oplus S_r$, then S is invariant under L and $L_{[S]}$ can be represented by a block diagonal matrix

$$A = \begin{pmatrix} A_1 & & \\ & A_2 & \\ & & \ddots \\ & & & A_r \end{pmatrix}$$

Let L be a linear operator mapping an n-dimensional vector space V into itself. If V can be expressed as a direct sum of invariant subspaces of L then it is possible to represent L as a block diagonal matrix A of the form (2).

The simplest such representation occurs in the case that L is diagonalizable. This occurs when the dimensions of the eigenspaces are equal to the multiplicities of the eigenvalues. In this case we can choose A so that each diagonal block A_i is a diagonal matrix and hence the matrix A is also diagonal.

If however there are any eigenvalues for which the dimension of the eigenspace is less than the multiplicity of the eigenvalue, then the subspace $S_{\lambda_1} \oplus \cdots \oplus S_{\lambda_k}$ will have dimension less than n and hence will be a proper subspace of V. In this case we would like to do is somehow enlarge the deficient S_{λ_i}’s and obtain a direct sum representation of V of the form $S_1 \oplus \cdots \oplus S_r$ where each S_i is invariant under L. Furthermore, we would like the corresponding block representation of L to be as close to a diagonal representation as possible. Indeed we will show that it is possible to find invariant subspaces S_i so that each $L_{[S_i]}$ can be represented by a bidiagonal matrix of a certain form.

As a simple example consider the case where the matrix A representing L is a 3×3 matrix with a triple eigenvalue λ and the eigenspace S_{λ} has dimension 1. In this case we would like to show that L can be represented by a 3×3 matrix

$$J = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

If such a representation is possible then A would have to be similar to J, i.e.,
AX = XJ for some nonsingular matrix X. If we let \(x_1, x_2, x_3 \) denote the column vectors of \(X \) this would say that

\[
A(x_1, x_2, x_3) = (x_1, x_2, x_3)J
\]

and hence

\[
Ax_1 = \lambda x_1 \\
x_2 = x_1 + \lambda x_2 \\
x_3 = x_2 + \lambda x_3
\]

or equivalently

\[
(A - \lambda I)x_1 = 0 \\
(A - \lambda I)x_2 = x_1 \\
(A - \lambda I)x_3 = x_2
\]

These equations imply that

\[
(A - \lambda I)^2 x_3 = (A - \lambda I)^2 x_2 = (A - \lambda I)x_1 = 0
\]

Thus if we can find a vector \(x \) such that

\[
(A - \lambda I)^2 x = 0 \quad \text{and} \quad (A - \lambda I)^2 x \neq 0
\]

then we can set

\[
x_3 = x, \quad x_2 = (A - \lambda I)x \quad \text{and} \quad x_1 = (A - \lambda I)^2 x
\]

The equations given in (4) really provide the key to our problem. If we can find a vector \(x \) satisfying (4) then it is not difficult to show that the vectors \(x_1, x_2, \) and \(x_3 \) defined in (5) are linearly independent and hence that \(X = (x_1, x_2, x_3) \) is invertible. Equation (3) implies that

\[
(A - \lambda I)^3 x = 0
\]

for all \(x \in R(X) \). Note that

\[
(A - \lambda I)^2 x_1 \neq 0
\]

This type of condition plays an important role in the theory we are about to develop. We state this condition for a general linear operator \(L \) in the following definition.

Definition. Let \(L \) be a linear operator mapping a vector space \(V \) into itself. \(L \) is said to be *nilpotent of index \(k \)* on \(V \) if \(L^k(v) = 0 \) for all \(v \in V \) and \(L^{k-1}(v_0) \neq 0 \) for some \(v_0 \in V \).
Lemma 9.1.3. Let L be a linear operator mapping a vector space V into itself and let $v \in V$. If $L^k(v) = 0$ and $L^{k-1}(v) \neq 0$ for some integer $k \geq 1$ then the vectors $v, L(v), L^2(v), \ldots, L^{k-1}(v)$ are linearly independent.

Proof. The proof will be by induction. The result clearly holds in the case $k = 1$ since

$v = L^0(v) \neq 0$ and $L(v) = 0$

and hence we have only a single nonzero vector v. (Here L^0 is taken to be the identity operator.) Assume now that we have a value of k such that the result holds for all $j < k$ and suppose we have a vector v satisfying

$L^{k-1}(v) \neq 0$ and $L^k(v) = 0$

To show linear independence we consider the equation

(6) $\alpha_1 v + \alpha_2 L(v) + \cdots + \alpha_k L^{k-1}(v) = 0$

If we let $w = L(v)$ and apply L to both sides of (6) we get

$\alpha_1 L(v) + \alpha_2 L^2(v) + \cdots + \alpha_{k-1} L^{k-1}(v) = 0$

or

$\alpha_1 w + \alpha_2 L(w) + \cdots + \alpha_{k-1} L^{k-2}(w) = 0$

Since

$L^{k-2}(w) = L^{k-1}(v) \neq 0$ and $L^{k-1}(w) = L^k(v) = 0$

then by our induction hypothesis

$w, L(w), \ldots, L^{k-2}(w)$

are linearly independent and hence

$\alpha_1 = \alpha_2 = \cdots = \alpha_{k-1} = 0$

Thus (6) reduces to

$\alpha_k L^{k-1}(v) = 0$

It follows that α_k must also be zero and hence $v, L(v), \ldots, L^{k-1}(v)$ are linearly independent.

If $L^{k-1}(v) \neq 0$ and $L^k(v) = 0$ for some $v \in V$ then the vectors $v, L(v), \ldots, L^{k-1}(v)$ form a basis for a subspace which we will denote by $C_L(v)$. The subspace $C_L(v)$ is invariant under L since for each

$w = \alpha_1 v + \alpha_2 L(v) + \cdots + \alpha_k L^{k-1}(v)$
in $C_L(v)$ we have

$$L(w) = \alpha_1 L(v) + \alpha_2 L^2(v) + \cdots + \alpha_{k-1} L^{k-1}(v)$$

and hence $L(w)$ is also in $C_L(v)$. We will refer to $C_L(v)$ as the L-cyclic subspace generated by v. In particular if L is nilpotent of index k then for each nonzero vector $v_0 \in V$ there is an integer k_0, $1 \leq k_0 \leq k$ such that $L^{k_0-1}(v_0) \neq 0$ and $L^{k_0}(v) = 0$. Thus if L is nilpotent on V then one can associate an L-cyclic subspace $C_L(v)$ with each nonzero vector v in V. It is easily seen that L-cyclic subspaces are invariant under L.

Let $C_L(v)$ be an L cyclic subspace of V with basis $\{v, L(v), \ldots, L^{k-1}(v)\}$. Let

$$y_i = L^{k-i}(v) \quad \text{for} \quad i = 1, \ldots, k \quad (\text{where} \quad L^0 = I)$$

Then

$$[y_1, y_2, \ldots, y_k] = [L^{k-1}(v), L^{k-2}(v), \ldots, v]$$

is an ordered basis for $C_L(v)$. Since

$$L(y_1) = 0$$

$$L(y_j) = y_{j-1} \quad \text{for} \quad j = 2, \ldots, k$$

it follows that the matrix representing $L_{[C_L(v)]}$ with respect to $[y_1, \ldots, y_k]$ is given by

$$A = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{pmatrix}$$

Thus, $L_{[C_L(v)]}$ can be represented by a bidiagonal matrix with 0’s along the main diagonal and 1’s along the superdiagonal.

Lemma 9.1.4. Let L be a linear operator mapping a vector space V into itself. If L is nilpotent of index k on V and $L^{k-1}(v_1), L^{k-1}(v_2), \ldots, L^{k-1}(v_r)$ are linearly independent, then the kr vectors

$$v_1, L(v_1), \ldots, L^{k-1}(v_1)$$
$$v_2, L(v_2), \ldots, L^{k-1}(v_2)$$
$$\vdots$$
$$v_r, L(v_r), \ldots, L^{k-1}(v_r)$$

are linearly independent.
Proof. The proof is by induction on \(k \). If \(k = 1 \) there is nothing to prove. Assume the result holds for all indices less than \(k \) and that \(L \) is nilpotent of index \(k \). If

\[
\begin{align*}
\alpha_{11}v_1 + \alpha_{12}L(v_1) + \cdots + \alpha_{1k}L^{k-1}(v_1) \\
+ \alpha_{21}v_2 + \alpha_{22}L(v_2) + \cdots + \alpha_{2k}L^{k-1}(v_2) \\
\vdots \\
+ \alpha_{r1}v_r + \alpha_{r2}L(v_r) + \cdots + \alpha_{rk}L^{k-1}(v_r) \\
= 0
\end{align*}
\]

(7)

then applying \(L \) to both sides of (7) we get

\[
\begin{align*}
\alpha_{11}y_1 + \alpha_{12}L(y_1) + \cdots + \alpha_{1,k-1}L^{k-2}(y_1) \\
+ \alpha_{21}y_2 + \alpha_{22}L(y_2) + \cdots + \alpha_{2,k-1}L^{k-2}(y_2) \\
\vdots \\
+ \alpha_{r1}y_r + \alpha_{r2}L(y_r) + \cdots + \alpha_{r,k-1}L^{k-2}(y_r) \\
= 0
\end{align*}
\]

(8)

where \(y_i = L(v_i) \) for \(i = 1, \ldots, r \). Since \(L^{k-2}(y_i) = L^{k-1}(v_i) \) for each \(i \) it follows that \(L^{k-2}(y_1), \ldots, L^{k-2}(y_n) \) are linearly independent. Let \(S \) be the subspace of \(V \) spanned by

\[
y_1, L(y_1), \ldots, L^{k-2}(y_1), \ldots, y_r, L(y_r), \ldots, L^{k-2}(y_r)
\]

Since \(L \) is nilpotent of index \(k - 1 \) on \(S \) it follows by the induction hypothesis that

\[
y_1, L(y_1), \ldots, L^{k-2}(y_1) \\
y_2, L(y_2), \ldots, L^{k-2}(y_2) \\
\vdots \\
y_r, L(y_r), \ldots, L^{k-2}(y_r)
\]

are linearly independent. Therefore

\[
\alpha_{ij} = 0 \text{ for } 1 \leq i \leq r, \ 1 \leq j \leq k - 1
\]

and consequently (8) reduces to

\[
\alpha_{1k}L^{k-1}(v_1) + \alpha_{2k}L^{k-1}(v_2) + \cdots + \alpha_{rk}L^{k-1}(v_r) = 0
\]

Since \(L^{k-1}(v_1), \ldots, L^{k-1}(v_r) \) are linearly independent it follows that

\[
\alpha_{1k} = \alpha_{2k} = \cdots = \alpha_{rk} = 0
\]

and hence

\[
v_1, L(v_1), \ldots, L^{k-1}(v_1) \\
v_2, L(v_2), \ldots, L^{k-1}(v_2) \\
\vdots \\
v_r, L(v_r), \ldots, L^{k-1}(v_r)
\]
are linearly independent.

Theorem 9.1.5. Let L be a linear operator mapping an n-dimensional vector space V into itself. If L is nilpotent of index k on V then V can be decomposed into a direct sum of L-cyclic subspaces.

Proof. The proof will be by induction on k. If $k = 1$ then L is the zero operator on V. Thus if $\{v_1, \ldots, v_n\}$ is any basis of V then $C_L(v_i)$ is the one-dimensional subspace spanned by v_i for each i and hence

$$V = C_L(v_1) \oplus \cdots \oplus C_L(v_n).$$

Suppose now that we have an integer $k > 1$ such that the result holds for all indices less than k and L is nilpotent of index k. Let $\{v_1, \ldots, v_m\}$ be a basis for $\ker(L^{k-1})$. This basis can be extended to a basis $\{v_1, \ldots, v_m, y_1, \ldots, y_r\}$ of V (where $r = n - m$).

Since $y_i \not\in \ker(L^{k-1})$ it follows that $L^{k-1}(y_i) \neq 0$. Let

$$B_1 = \{y_1, L(y_1), \ldots, L^{k-1}(y_1), \ldots, y_r, L(y_r), \ldots, L^{k-1}(y_r)\}$$

We claim B_1 is a basis for a subspace S_1 of V. By Lemma 9.1.4 it suffices to show that $L^{k-1}(y_1), L^{k-1}(y_2), \ldots, L^{k-1}(y_r)$ are linearly independent. If

$$\alpha_1L^{k-1}(y_1) + \alpha_2L^{k-1}(y_2) + \cdots + \alpha_rL^{k-1}(y_r) = 0$$

then

$$L^{k-1}(\alpha_1 y_1 + \cdots + \alpha_r y_r) = 0$$

and hence $\alpha_1 y_1 + \cdots + \alpha_r y_r \in \ker(L^{k-1})$. But then $\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$ otherwise $v_1, \ldots, v_m, y_1, \ldots, y_r$ would be dependent. Thus $L^{k-1}(y_1), \ldots, L^{k-1}(y_r)$ are linearly independent and hence B_1 is a basis for a subspace S_1 of V. It follows from Lemma 9.1.1 that

$$S_1 = C_L(y_1) \oplus \cdots \oplus C_L(y_r)$$

If $S_1 \neq V$ extend B_1 to a basis B for V. Let B_2 be the set of additional basis elements (i.e., $B = B_1 \cup B_2$ and $B_1 \cap B_2 = \emptyset$). B_2 is a basis for a subspace S_2 of V and by Lemma 9.1.1 $V = S_1 \oplus S_2$. By construction S_2 is a subspace of $\ker(L^{k-1})$. (If $s \in S_2$ then it must be of the form $s = \alpha_1 v_1 + \cdots + \alpha_m v_m + 0y_1 + \cdots + 0y_r$.) Thus L is nilpotent of index $k_1 < k$ on S_2. By the induction hypothesis S_2 can be written as a direct sum of L-cyclic subspaces and since $V = S_1 \oplus S_2$ it follows that V is a direct sum of L-cyclic subspaces.

Corollary 9.1.6. If L is a linear operator mapping an n-dimensional vector space V into itself and L is nilpotent of index k on V then L can be represented
by a matrix of the form

$$A = \begin{pmatrix}
J_1 & & \\
& J_2 & \\
& & \ddots \\
& & & J_s
\end{pmatrix}$$

where each J_i is a $k_i \times k_i$ bidiagonal matrix ($1 \leq k_i \leq k$ and $\sum_{i=1}^{s} k_i = n$) with 0’s along the main diagonal and 1’s along the superdiagonal.

Proof. By Theorem 9.1.5 we can write

$$V = C_L(v_1) \oplus \cdots \oplus C_L(v_s)$$

If $C_L(v_i)$ has dimension k_i then the matrix representing $L_{[C_L(v_i)]}$ with respect to $[L^{k_{i-1}}(v_i), \ldots, v_i]$ will be

$$J_i = \begin{pmatrix}
0 & 1 & & \\
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
& & & 0
\end{pmatrix}$$

The conclusion follows from Lemma 9.1.2.

It follows from Corollary 9.1.6 that if L is nilpotent on an n-dimensional vector space V then all of its eigenvalues are 0. Conversely if all of the eigenvalues of L are 0 then it follows from Theorem 6.4.3 that L can be represented by a triangular matrix T whose diagonal elements are all 0. Thus for some k, T^k will be the zero matrix and hence L^k will be the zero operator. Thus if L is a linear operator mapping an n-dimensional vector space V into itself then L is nilpotent if and only if all of its eigenvalues are 0.

Corollary 9.1.7. Let L be a linear operator mapping an n-dimensional vector space V into itself. If L has only one distinct eigenvalue λ then L can be represented by a matrix A of the form

$$A = \begin{pmatrix}
J_1(\lambda) & & \\
& J_2(\lambda) & \\
& & \ddots \\
& & & J_s(\lambda)
\end{pmatrix}$$

(9)
where each $J_i(\lambda)$ is a bidiagonal matrix of the form

$$J_i(\lambda) = \begin{pmatrix}
\lambda & 1 \\
\lambda & 1 \\
& \ddots & \ddots \\
& & \lambda & 1
\end{pmatrix}$$

Proof. Let I denote the identity operator on V. The eigenvalues of the operator $L - \lambda I$ are all 0 and hence $L - \lambda I$ is nilpotent. It follows from Corollary 9.1.6 that with respect to some ordered basis $[v_1, \ldots, v_n]$ of V the operator $L - \lambda I$ can be represented by a matrix of the form

$$J = \begin{pmatrix}
J_1(0) \\
J_2(0) \\
& \ddots \\
J_s(0)
\end{pmatrix}$$

where

$$J_i(0) = \begin{pmatrix}
0 & 1 & & \\
0 & 1 & & \\
& & \ddots & \\
& & & 0 & 1 \\
& & & & 0
\end{pmatrix}$$

The matrix representing λI with respect to $[v_1, \ldots, v_n]$ is simply λI. Since $L = (L - \lambda I) + \lambda I$ it follows that the matrix representing L with respect to $[v_1, \ldots, v_n]$ is

$$J + \lambda I = \begin{pmatrix}
J_1(\lambda) \\
J_2(\lambda) \\
& \ddots \\
J_s(\lambda)
\end{pmatrix}$$

A matrix of the form (10) is said to be a simple Jordan matrix. Thus a simple Jordan matrix is a bidiagonal matrix whose diagonal elements all have the same value λ and whose superdiagonal elements are all 1.

Example. Let

$$A = \begin{pmatrix}
1 & 2 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

We can think of A as representing an operator from \mathbb{R}^5 into \mathbb{R}^5. Since $\lambda = 1$ is the only eigenvalue, A is similar to a block diagonal matrix whose diagonal blocks are simple Jordan matrices with 1’s along both the diagonal and the superdiagonal. The eigenspace corresponding to $\lambda = 1$ is spanned by the vectors
\(\mathbf{x} = (1, 0, 0, 0, 0)^T \) and \(\mathbf{y} = (0, 0, -1, 0, 1)^T \). Thus the bidiagonal matrix will consist of two simple Jordan blocks, \(J_1(1) \) and \(J_2(1) \). If we order the blocks so that the first block is the largest then the only possibilities for the block diagonal matrix are:

\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\text{ or }
\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

To determine which of these forms is correct one must compute powers of \(A - I \).

\[
A - I = \begin{pmatrix}
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\quad (A - I)^2 = \begin{pmatrix}
0 & 0 & 2 & 5 & 2 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
(A - I)^3 = \begin{pmatrix}
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\quad (A - I)^4 = O
\]

Thus \(A - I \) is nilpotent of index 4. The systems

\[
(A - I)^k \mathbf{s} = \mathbf{x} \quad \text{and} \quad (A - I)^j \mathbf{s} = \mathbf{y}
\]

are clearly inconsistent if \(k \) and \(j \) are greater than 3. We determine the maximum \(k \) and maximum \(j \) for which these systems are consistent. For \(k = 3 \) the system

\[
(A - I)^3 \mathbf{s} = \mathbf{x}
\]

is consistent and will have infinitely many solutions. We pick one of these solutions

\[
\mathbf{x}_1 = (0, 0, 0, \frac{1}{2}, 0)^T
\]

To generate the rest of the cyclic subspace we compute

\[
\mathbf{x}_2 = (A - I)\mathbf{x}_1 = (\frac{1}{2}, 1, \frac{1}{2}, 0, 0)^T
\]

\[
\mathbf{x}_3 = (A - I)\mathbf{x}_2 = (A - I)^2\mathbf{x}_1 = (\frac{5}{2}, \frac{1}{2}, 0, 0, 0)^T
\]

With respect to the ordered basis \([\mathbf{x}, \mathbf{x}_3, \mathbf{x}_2, \mathbf{x}_1]\) the matrix representing the operator \(A \) on this subspace will be of the form

\[
J_1(1) = \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
The systems
\[(A - I)^j s = y\]
are inconsistent for all positive integers \(j\). Thus the cyclic subspace containing \(y\) has dimension 1. It follows that the matrix representing \(A\) with respect to \([x, x_3, x_2, x_1, y]\) is
\[
J = \begin{pmatrix}
J_1(1) \\
J_2(1)
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

The reader may verify that if \(Y\) is the matrix whose columns are \(x, x_3, x_2, x_1, y\), respectively, then
\[YJY^{-1} = A\]

In the next section we will show that a matrix \(A\) with distinct eigenvalues \(\lambda_1, \ldots, \lambda_m\) is similar to a matrix \(J\) of the form
\[
J = \begin{pmatrix}
B_1 & B_2 & \cdots & B_m
\end{pmatrix}
\]
where each \(B_i\) is of the form (9) with diagonal elements equal to \(\lambda_i\), i.e.,
\[
B_i = \begin{pmatrix}
J_1(\lambda_i) & & & \\
& J_2(\lambda_i) & & \\
& & \ddots & \\
& & & J_s(\lambda_i)
\end{pmatrix}
\]
where the \(J_k(\lambda_i)\)'s are simple Jordan matrices. We say that \(J\) is the *Jordan canonical form of \(A\). The Jordan canonical form is unique except for a reordering of the blocks.

Exercises

1. Let \(L\) be a linear operator on a vector space \(V\) of dimension 5 and let \(A\) be any matrix representing \(L\). If \(L\) is nilpotent of index 3 then what are the possible Jordan canonical forms of \(A\)?
2. Let \(A\) be a 4 \(\times\) 4 matrix whose only eigenvalue is \(\lambda = 2\). What are the possible Jordan canonical forms of \(A\)?
3. Let \(L \) be a linear operator on a vector space \(V \) of dimension 6 and let \(A \) be a matrix representing \(L \). If \(L \) has only one distinct eigenvalue \(\lambda \) and the eigenspace \(S_\lambda \) has dimension 3 then what are the possible Jordan canonical forms of \(A \)?

4. For each of the following find a matrix \(S \) such that \(S^{-1}AS \) is a simple Jordan matrix.

(a) \[
A = \begin{pmatrix}
1 & 0 & 1 \\
1 & 0 & 2 \\
1 & -1 & 2
\end{pmatrix}
\]

(b) \[
A = \begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

5. In each of the following find a matrix \(S \) such that \(S^{-1}AS \) is the Jordan canonical form of \(A \).

(a) \[
A = \begin{pmatrix}
-1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-2 & 2 & 0 & 0 \\
0 & 3 & -1 & 0
\end{pmatrix}
\]

(b) \[
A = \begin{pmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

6. Let \(S_1 \) and \(S_2 \) be subspaces of a vector space \(V \). Prove that \(V = S_1 \oplus S_2 \) if and only if \(V = S_1 + S_2 \) and \(S_1 \cap S_2 = \{0\} \).

8. Let \(L \) be a linear operator mapping a vector space \(V \) into itself. Show that \(\text{ker}(L) \) and \(\text{R}(L) \) are invariant subspaces of \(V \) under \(L \).

9. Let \(L \) be a linear operator on a vector space \(V \). Let \(S_k[v] \) denote the subspace spanned by \(v, L(v), \ldots, L^{k-1}(v) \). Show that \(S_k[v] \) is invariant under \(L \) if and only if \(L^k(v) \in S_k[v] \).

10. Let \(L \) be a linear operator on a vector space \(V \) and let \(S \) be a subspace of \(V \). Let \(I \) represent the identity operator and let \(\lambda \) be a scalar. Show that \(L \) is invariant on \(S \) if and only if \(L - \lambda I \) is invariant on \(S \).

11. Let \(S \) be the subspace of \(C[a,b] \) spanned by \(x, xe^x, \) and \(xe^x + x^2e^x \). Let \(D \) be the differentiation operator on \(S \).

(a) Find a matrix \(A \) representing \(D \) with respect to \([e^x, xe^x, xe^x + x^2e^x] \).

(b) Determine the Jordan canonical form of \(A \) and the corresponding basis of \(S \).

12. Let \(D \) denote the linear operator on \(P_n \) defined by \(D(p) = p' \) for all \(p \in P_n \). Show that \(D \) is nilpotent and can be represented by a simple Jordan matrix.
2 The Jordan Canonical Form

In this section we will show that any linear operator \(L \) on an \(n \)-dimensional vector space \(V \) can be represented by a block diagonal matrix whose diagonal blocks are simple Jordan matrices. We will apply this result to solving systems of linear differential equations of the form \(Y' = AY \) where \(A \) is defective.

Let us begin by considering the case where \(L \) has more than one distinct eigenvalue. We wish to show that if \(L \) has distinct eigenvalues \(\lambda_1, \ldots, \lambda_k \) then \(V \) can be decomposed into a direct sum of invariant subspaces \(S_1, \ldots, S_k \) such that \(L - \lambda_i I \) is nilpotent on \(S_i \) for each \(i = 1, \ldots, k \). To do this we must first prove the following lemma and theorem.

Lemma 9.2.1. If \(L \) is a linear operator mapping an \(n \)-dimensional vector space \(V \) into itself then there exists a positive integer \(k_0 \) such that \(\ker(L^{k_0}) = \ker(L^{k_0+k}) \) for all \(k > 0 \).

Proof. If \(i < j \) then clearly \(\ker(L^i) \) is a subspace of \(\ker(L^j) \). We claim that if \(\ker(L^i) = \ker(L^{i+1}) \) for some \(i \) then \(\ker(L^i) = \ker(L^{i+k}) \) for all \(k \geq 1 \). We will prove this by induction on \(k \). In the case \(k = 1 \), there is nothing to prove. Assume for some \(k > 1 \) the result holds all indices less than \(k \). If \(\mathbf{v} \in \ker(L^{i+k}) \) then

\[
0 = L^{i+k}(\mathbf{v}) = L^{i+k-1}(L(\mathbf{v}))
\]

Thus \(L(\mathbf{v}) \in \ker(L^{i+k-1}) \). By the induction hypothesis \(\ker(L^{i+k-1}) = \ker(L^i) \). Therefore \(L(\mathbf{v}) \in \ker(L^i) \) and hence \(\mathbf{v} \in \ker(L^{i+1}) \). Since \(\ker(L^{i+1}) = \ker(L^i) \), it follows that \(\mathbf{v} \in \ker(L^i) \) and hence \(\ker(L^i) = \ker(L^{i+k}) \). Thus if \(\ker(L^{i+1}) = \ker(L^i) \) for some \(i \) then

\[
\ker(L^i) = \ker(L^{i+1}) = \ker(L^{i+1}) = \ldots
\]

Since \(V \) is finite dimensional, the dimension of \(\ker(L^i) \) cannot keep increasing as \(k \) increases. Thus for some \(k_0 \) we must have \(\dim(\ker(L^{k_0})) = \dim(\ker(L^{k_0+1})) \) and hence \(\ker(L^{k_0}) \) and \(\ker(L^{k_0+1}) \) must be equal. It follows then that

\[
\ker(L^{k_0}) = \ker(L^{k_0+1}) = \ker(L^{k_0+2}) = \ldots
\]

\[\square\]

Theorem 9.2.2. If \(L \) is a linear transformation on an \(n \)-dimensional vector space \(V \) then there exist invariant subspaces \(X \) and \(Y \) such that \(V = X \oplus Y \), \(L \) is nilpotent on \(X \), and \(L|Y \) is invertible.

Proof. Choose \(k_0 \) to be the smallest positive integer such that \(\ker(L^{k_0}) = \ker(L^{k_0+1}) \). It follows from Lemma 9.2.1 that \(\ker(L^{k_0}) = \ker(L^{k_0+j}) \) for all \(j \geq 1 \). Let \(X = \ker(L^{k_0}) \). Clearly \(X \) is invariant under \(L \) for if \(\mathbf{x} \in X \) then \(L(\mathbf{x}) \in \ker(L^{k_0+1}) \) which is a proper subspace of \(\ker(L^{k_0}) \). Let \(Y = R(L^{k_0}) \). If \(\mathbf{w} \in X \cap Y \) then \(\mathbf{w} = L^{k_0}(\mathbf{v}) \) for some \(\mathbf{v} \) and hence

\[
0 = L^{k_0}(\mathbf{w}) = L^{k_0}(L^{k_0}(\mathbf{v})) = L^{2k_0}(\mathbf{v})
\]

14
Thus \(v \in \ker(L^{2k_0}) = \ker(L^{k_0}) \) and hence
\[
w = L^{k_0}(v) = 0
\]

Therefore \(X \cap Y = \{0\} \). We claim \(V = X \oplus Y \). Let \(\{x_1, \ldots, x_r\} \) be a basis for \(X \) and let \(\{y_1, \ldots, y_{n-r}\} \) be a basis for \(Y \). By Lemma 9.2.1 it suffices to show that \(x_1, \ldots, x_r, y_1, \ldots, y_{n-r} \) are linearly independent and hence form a basis for \(V \). If
\[
(1) \quad \alpha_1 x_1 + \cdots + \alpha_r x_r + \beta_1 y_1 + \cdots + \beta_{n-r} y_{n-r} = 0
\]
then applying \(L^{k_0} \) to both sides gives
\[
\beta_1 L^{k_0}(y_1) + \cdots + \beta_{n-r} L^{k_0}(y_{n-r}) = 0
\]
or
\[
L^{k_0}(\beta_1 y_1 + \cdots + \beta_{n-r} y_{n-r}) = 0
\]
Therefore \(\beta_1 y_1 + \cdots + \beta_{n-r} y_{n-r} \in X \cap Y \) and hence
\[
\beta_1 y_1 + \cdots + \beta_{n-r} y_{n-r} = 0
\]
Since the \(y_i \)'s are linearly independent it follows that
\[
\beta_1 = \beta_2 = \cdots = \beta_{n-r} = 0
\]
and hence (1) simplifies to
\[
\alpha_1 x_1 + \cdots + \alpha_r x_r = 0
\]
Since the \(x_i \)'s are linearly independent it follows that
\[
\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0
\]
Thus, \(x_1, \ldots, x_r, y_1, \ldots, y_{n-r} \) are linearly independent and therefore \(V = X \oplus Y \). \(L \) is invariant and nilpotent on \(X \). We claim that \(L \) is invariant and invertible on \(Y \). Let \(y \in Y \), then \(y = L^{k_0}(v) \) for some \(v \in V \). Thus,
\[
L(y) = L(L^{k_0}(v)) = L^{k_0+1}(v) = L^{k_0}(L(v))
\]
Therefore \(L(y) \in Y \) and hence \(Y \) is invariant under \(L \). To prove \(L_{|Y} \) is invertible it suffices to show that
\[
\ker(L_{|Y}) = Y \cap \ker(L) = \{0\}
\]
This, however, follows immediately since \(\ker(L) \subset X \) and \(X \cap Y = \{0\} \). \(\square \)

We are now ready to prove the main result of this section.
Theorem 9.2.3. Let L be a linear operator mapping a finite dimensional vector space V into itself. If $\lambda_1, \ldots, \lambda_k$ are the distinct eigenvalues of L then V can be decomposed into a direct sum

$$X_1 \oplus X_2 \oplus \cdots \oplus X_k$$

such that $L - \lambda I$ is nilpotent on X_i and the dimension of X_i equals the multiplicity of λ_i.

Proof. Let $L_1 = L - \lambda_1 I$. By Theorem 9.2.2 there exist subspaces X_1 and Y_1 which are invariant under L_1 such that $V = X_1 \oplus Y_1$, L_1 is nilpotent on X_1 and $L_1|_{Y_1}$ is invertible. It follows that X_1 and Y_1 are also invariant under L. By Corollary 9.1.2, $L|_{X_1}$ can be represented by a block diagonal matrix A_1 where diagonal blocks are simple Jordan matrices whose diagonal elements all equal λ_1. Thus

$$\det(A_1 - \lambda I) = (\lambda_1 - \lambda)^{m_1}$$

where m_1 is the dimension of X_1. Let B_1 be a matrix representing $L|_{Y_1}$. Since L_1 is invertible on Y_1 it follows that λ_1 is not an eigenvalue of B_1. Thus

$$\det(B_1 - \lambda I) = q(\lambda)$$

where $q(\lambda) \neq 0$. It follows from Lemma 9.1.2 that the operator L on V can be represented by the matrix

$$A = \begin{pmatrix} A_1 \\ B_1 \end{pmatrix}$$

Thus if each eigenvalue λ_i of L has multiplicity r_i, then

$$(\lambda_1 - \lambda)^{r_1} (\lambda_2 - \lambda)^{r_2} \cdots (\lambda_k - \lambda)^{r_k} = \det(A - \lambda I) = \det(A_1 - \lambda I) \det(B_1 - \lambda I) = (\lambda_1 - \lambda)^{m_1} q(\lambda)$$

Therefore $r_1 = m_1$ and

$$q(\lambda) = (\lambda_2 - \lambda)^{r_2} \cdots (\lambda_k - \lambda)^{r_k}$$

If we consider the operator $L_2 = L - \lambda_2 I$ on the vector space Y_1 then we can decompose Y_1 into a direct sum $X_2 \oplus Y_2$ such that X_2 and Y_2 are invariant under L, L_2 is nilpotent on X_2 and $L_2|_{Y_2}$ is invertible. Indeed we can continue this process of decomposing Y_i into a direct sum $X_{i+1} \oplus Y_{i+1}$ until we obtain a direct sum of the form

$$V = X_1 \oplus X_2 \oplus \cdots \oplus X_{k-1} \oplus Y_{k-1}$$
The vector space \(Y_{k-1} \) will be of dimension \(r_k \) with a single eigenvalue \(\lambda_k \). Thus, if we set \(X_k = Y_{k-1} \) then \(L - \lambda_k I \) will be nilpotent on \(X_k \) and we will have the desired decomposition of \(V \).

It follows from Theorem 9.2.3 that each operator \(L \) mapping an \(n \)-dimensional vector space \(V \) into itself can be represented by a block diagonal matrix of the form

\[
J = \begin{pmatrix}
A_1 & & \\
& A_2 & \\
& & \ddots & \\
& & & A_k
\end{pmatrix}
\]

where each \(A_i \) is an \(r_i \times r_i \) block diagonal matrix (\(r_i = \) multiplicity of \(\lambda_i \)) whose blocks consist of simple Jordan matrices with \(\lambda_i \)'s along the main diagonal.

If \(A \) is an \(n \times n \) matrix then \(A \) represents the operator \(L_A \) with respect to the standard basis on \(R^n \) where \(L_A \) is defined by

\[
L_A(x) = Ax \quad \text{for each} \ x \in R^n
\]

By the preceding remarks \(L_A \) can be represented by a matrix \(J \) of the form just described. It follows that \(A \) is similar to \(J \). Thus each \(n \times n \) matrix \(A \) with distinct eigenvalues \(\lambda_1, \ldots, \lambda_k \) is similar to a matrix \(J \) of the form

\[
J = \begin{pmatrix}
A_1 & & \\
& A_2 & \\
& & \ddots & \\
& & & A_k
\end{pmatrix}
\]

where \(A_i \) is an \(r_i \times r_i \) matrix (\(r_i = \) multiplicity of \(\lambda_i \)) of the form

\[
A_i = \begin{pmatrix}
J_1(\lambda_i) & & \\
& J_2(\lambda_i) & \\
& & \ddots & \\
& & & J_s(\lambda_i)
\end{pmatrix}
\]

with the \(J(\lambda_i) \)'s being simple Jordan matrices. The matrix \(J \) defined by (2) and (3) is called the Jordan canonical form of \(A \). The Jordan canonical form of a matrix is unique except for a reordering of the simple Jordan blocks along the diagonal.

Example Find the Jordan canonical form of the matrix

\[
A = \begin{pmatrix}
-3 & 1 & 0 & 1 & 1 \\
-3 & 1 & 0 & 1 & 1 \\
-4 & 1 & 0 & 2 & 1 \\
-3 & 1 & 0 & 1 & 1 \\
-4 & 1 & 0 & 1 & 2
\end{pmatrix}
\]
Solution: The characteristic polynomial of \(A \) is
\[
|A - \lambda I| = \lambda^4(1 - \lambda)
\]
The eigenspace corresponding to \(\lambda = 1 \) is spanned by \(x_1 = (1, 1, 1, 1, 2)^T \) and the eigenspace corresponding to \(\lambda = 0 \) is spanned by \(x_2 = (1, 1, 0, 1, 1)^T \) and \(x_3 = (0, 0, 1, 0, 0)^T \). Thus the Jordan canonical form of \(A \) then will consist of three simple Jordan blocks. Except for a reordering of the blocks there are only two possibilities:
\[
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{pmatrix} \quad \text{or} \quad \begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{pmatrix}
\]
To determine which of these forms is correct we compute \((A - 0I)^2 = A^2\).
\[
A^2 = \begin{pmatrix}
-1 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 1 \\
-2 & 0 & 0 & 0 & 2
\end{pmatrix}
\]
Next we consider the systems \(A^2x = x_i \) for \(i = 2, 3 \). Since these systems turn out to be inconsistent, the Jordan canonical form of \(A \) cannot have any \(3 \times 3 \) simple Jordan blocks and consequently it must be of the form
\[
J = X^{-1}AX = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{pmatrix}
\]
To find \(X \) we must solve \(Ax = x_i \) for \(i = 2, 3 \). The system, \(Ax = x_2 \), has infinitely many solutions. We need choose only one of these say \(x_4 = (1, 3, 0, 0, 1)^T \). Similarly \(Ax = x_3 \) has infinitely many solutions one of which is \(x_5 = (1, 0, 0, 2, 1)^T \). Let
\[
X = \begin{pmatrix}
x_1 & x_2 & x_3 & x_4 & x_5
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 3 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 2 \\
2 & 1 & 1 & 0 & 1
\end{pmatrix}
\]
The reader may verify that $X^{-1}AX = J$. □

One of the main applications of the Jordan canonical form is in solving systems of linear differential equations which have defective coefficient matrices. Given such a system

$$Y'(t) = AY(t)$$

we can simplify it by using the Jordan canonical form of A. Indeed if $A = XJX^{-1}$ then

$$Y' = (XJX^{-1})Y$$

Thus if we set $Z = X^{-1}Y$ then $Y' = XZ'$ and the system simplifies to

$$XZ' = XJZ$$

Multiplying by X^{-1} we get

(4) \[Z' = JZ \]

Because of the structure of J this new system is much easier to solve. Indeed solving (4) will only involve solving a number of smaller systems each of the form

$$z'_1 = \lambda z_1 + z_2$$

$$z'_2 = \lambda z_2 + z_3$$

$$\vdots$$

$$z'_{k-1} = \lambda z_{k-1} + z_k$$

$$z'_k = \lambda z_k$$

These equations can be solved one at a time starting with the last. The solution to the last equation is clearly

$$z_k = ce^{\lambda t}$$

The solution to any equation of the form

$$z'(t) - \lambda z(t) = u(t)$$

is given by

$$z(t) = e^{\lambda t} \int e^{-\lambda t} u(t) dt$$

Thus we can solve

$$z'_{k-1} - \lambda z_{k-1} = z_k$$

for z_{k-1} and then solve

$$z'_{k-2} - \lambda z_{k-2} = z_{k-1}$$

for z_{k-2}, etc.
Example. Solve the initial value problem

\[
\begin{pmatrix}
 y'_1 \\
 y'_2 \\
 y'_3 \\
 y'_4
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & -1 \\
 0 & 1 & 1 & 0 \\
 0 & -1 & 1 & 2 \\
 1 & 0 & 2 & 1
\end{pmatrix} \begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4
\end{pmatrix}
\]

\[y_1(0) = y_2(0) = y_3(0) = 0, \quad y_4(0) = 2\]

Solution: The coefficient matrix \(A\) has two distinct eigenvalues \(\lambda_1 = 0\) and \(\lambda_2 = 2\) each of multiplicity 2. The corresponding eigenspaces are both dimension 1. Using the methods of this section \(A\) can be factored into a product \(XJX^{-1}\) where

\[
J = \begin{pmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 2 & 1 \\
 0 & 0 & 0 & 2
\end{pmatrix}
\]

The choice of \(X\) is not unique. The reader may verify that the one we have calculated

\[
X = \begin{pmatrix}
 1 & 1 & -1 & 1 \\
 1 & 1 & 1 & -1 \\
 -1 & 0 & 1 & 0 \\
 1 & 0 & 1 & 0
\end{pmatrix}
\]

does the job. The system

\[X' = JX\]

can be broken up into two systems

\[
x'_1 = x_2 \\
x'_2 = 0 \\
x'_3 = 2x_3 + x_4 \\
x'_4 = 2x_4
\]

The first system is not difficult to solve.

\[
x_1 = c_1t + c_2 \\
x_2 = c_1 \\
(c_1 \text{ and } c_2 \text{ are constants})
\]

To solve the second system we solve first

\[x'_4 = 2x_4\]

getting

\[x_4 = c_3e^{2t}\]

Thus

\[x'_3 - 2x_3 = c_3e^{2t}\]
and hence
\[x_3 = e^{2t} \int e^{-2t}(c_3 e^{2t})dt = e^{2t}(c_3 t + c_4) \]

Finally we have
\[Y = JX = \begin{pmatrix} (c_1 t + c_2) + c_1 - (c_3 t + c_4)e^{2t} + c_3 e^{2t} \\ (c_1 t + c_2) + c_1 + (c_3 t + c_4)e^{2t} - c_3 e^{2t} \\ -(c_1 t + c_2) + (c_3 t + c_4)e^{2t} \\ (c_1 t + c_2) + (c_3 t + c_4)e^{2t} \end{pmatrix} \]

If we set \(t = 0 \) and use the initial conditions to solve for the \(c_i \)'s we get
\[c_1 = -1, \; c_2 = c_3 = c_4 = 1 \]

Thus the solution to the initial value problem is
\[y_1 = -t - te^{2t} \]
\[y_2 = -t + te^{2t} \]
\[y_3 = -1 + t + (1 + t)e^{2t} \]
\[y_4 = 1 - t + (1 + t)e^{2t} \]

The Jordan canonical form not only provides a nice representation of an operator but it allows us to solve systems of the form \(Y' = AY \) even when the coefficient matrix is defective. From a theoretical point of view its importance cannot be questioned. As far as practical applications go, however, it is generally not very useful.

If \(n \geq 5 \) it is usually necessary to calculate the eigenvalues of \(A \) by some numerical method. The calculated \(\lambda_i \)'s are only approximations to the actual eigenvalues. Thus we could have calculated values \(\lambda_1' \) and \(\lambda_2' \) which are unequal while actually \(\lambda_1 = \lambda_2 \). So in practice it may be difficult to determine the correct multiplicity eigenvalues. Furthermore, in order to solve \(Y' = AY \) we need to find the similarity matrix \(X \) such that \(A = XJX^{-1} \). However, when \(A \) has multiple eigenvalues the matrix \(X \) may be very sensitive to perturbations and in practice one is not guaranteed that the entries of the computed similarity matrix will have any digits of accuracy whatsoever. A recommended alternative is to compute the matrix exponential \(e^A \) and use it to solve the system \(Y' = AY \).

Exercises

1. Let \(A \) be a \(4 \times 4 \) matrix whose only eigenvalue is \(\lambda = 2 \). What are the possible Jordan canonical forms for \(A \)?
2. Let \(A \) be a \(5 \times 5 \) matrix. If \(A^2 \neq 0 \) and \(A^3 = 0 \), what are the possible Jordan canonical forms for \(A \)?
3. Find the Jordan canonical form J for each of the following matrices and determine a matrix X such that $X^{-1}AX = J$.

(a) $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 2 \\ 1 & -1 & 2 \end{pmatrix}$

(b) $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

(c) $A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

(d) $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

(e) $A = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

4. Let L be a linear operator on a finite dimensional vector space V.

(a) Show that $R(L^i) \subset R(L^j)$ whenever $i > j$.

(b) If for some k_0, $R(L^{k_0}) = R(L^{k_0+1})$ then $R(L^{k_0}) = R(L^{k_0+k})$ for all $k \geq 1$.

5. Let L be as in Exercise 4.

(a) Show that there is a smallest positive integer k_0 such that $R(L^{k_0}) = R(L^{k_0+1})$.

(b) Let k_1 be the smallest positive integer such that $\ker(L^{k_1}) = \ker(L^{k_1+1})$. Show that $k_1 = k_0$.
6. Solve the initial value problem
\begin{align*}
y'_1 &= y_3 \\
y'_2 &= y_1 - y_2 + 2y_3 \\
y'_3 &= y_1 - y_2 + y_3 \\
y_1(0) &= 0, \ y_2(0) = 0, \ y_3(0) = -1
\end{align*}

7. Suppose
\[X^{-1}AX = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = J \]

If \(x_1, x_2, \) and \(x_3 \) are the column vectors of \(X \) define
\begin{align*}
z_1 &= ax_1 \\
z_2 &= ax_2 + bx_1 \\
z_3 &= ax_3 + bx_2 + cx_3
\end{align*}

where \(a, b, \) and \(c \) are scalars and \(a \neq 0 \).

(a) If \(Z = (z_1 \ z_2 \ z_3) \) show that
\[AZ = ZJ \]

(b) Let
\[B = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \]

Show that \(BJB^{-1} = X^{-1}AX = J \).