Be sure to show and/or explain your work, bald answers are not worth much.

1. (20) Let $\Gamma(t) = (\cos t, \sin t, 8 - t/2)$ for $0 \leq t \leq 8$, be the path of a fly in our classroom.

 (a) Where will the fly be located when $t = 8$?

 $\Gamma(8) = (\cos 8, \sin 8, 4) \approx (-0.145, 0.989, 4)$

 (b) What is the fly’s velocity and speed at $t = \frac{\pi}{4}$?

 $\Gamma'(t) = \left(-\sin t, \cos t, \frac{-1}{2}\right)$. Thus, $\Gamma'(\frac{\pi}{4}) = \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{-1}{2}\right)$

 and the speed equals $||\Gamma'(\frac{\pi}{4})|| = \frac{\sqrt{5}}{2}$.

 (c) Find the projection of the fly’s velocity vector at $t = \frac{\pi}{4}$ onto the vector $(1, 1, 1)$. The projection equals

 \[
 \frac{\Gamma'(\frac{\pi}{4}) \cdot (1, 1, 1)}{||(1, 1, 1)||^2} (1, 1, 1) = \frac{-1}{6} (1, 1, 1)
 \]

 (d) How far does the fly fly?

 \[
 \int_0^8 ||\Gamma'(t)|| \, dt = \int_0^8 \sqrt{(-\sin t)^2 + \cos^2 t + 1/4} \, dt
 \]

 \[
 = \int_0^8 \frac{\sqrt{5}}{2} \, dt = 4\sqrt{5}.
 \]

2. (20) Let S be the surface which is the graph of the function $f(x, y) = x^3 - xy + xy^2$. That is, $S = \{(x, y, z) : z = f(x, y)\}$.

 (a) What is the domain of f?

 domain equals all of \mathbb{R}^2

 (b) What is the range of f?

 range equals all real numbers
(c) Find the equation for the tangent plane to S at the point $(1, 2, 3)$.

Let $T(x, y)$ denote the equation of the plane.

\[
T(x, y) = f(1, 2) + (x - 1) \frac{\partial f}{\partial x}(1, 2) + (y - 2) \frac{\partial f}{\partial y}(1, 2) \\
= 3 + 5(x - 1) + 3(y - 2) \\
= 5x + 3y - 8.
\]

3. (20) Let

\[
f(x, y, z) = xy - \sin(yz),
\]

\[
\Gamma(t) = (e^t - 2, t^2 - 1, \ln t)
\]

\[
g(t) = f(\Gamma(t))
\]

Find the rate of change of $g(t)$ when $t = 1$.

\[
\Gamma(1) = (e - 2, 0, 0) \text{ and } \Gamma'(t) = \left(e^t, 2t, \frac{1}{t}\right)
\]

\[
\nabla f = (y, x - z \cos yz, -y \cos yz) \text{ Thus, at } (e - 2, 0, 0)
\]

\[
\nabla f = (0, e - 2, 0)
\]

\[
\frac{dg}{dt} = \nabla f \cdot \Gamma'(1) = (0, e - 2, 0) \cdot (e, 2, 1) = 2(e - 2).
\]

4. (20) Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$.

(a) \[\lim_{(x, y) \to (2, 1)} f(x, y) = ?\]

\[\lim_{(x, y) \to (2, 1)} f(x, y) = \frac{2}{5}\]

(b) Define, in terms of ϵ and δ, what \[\lim_{(x, y) \to (2, 1)} f(x, y) = (\text{your answer from a.})\] means.

for any $\epsilon > 0$ there exists a $\delta > 0$ such that

if $0 < \| (x, y) - (2, 1) \| < \delta$, then $\left\| \frac{xy^2}{x^2 + y^4} - \frac{2}{5} \right\| < \epsilon$

(c) \[\lim_{(x, y) \to (0, 0)} f(x, y) = ?\]

The limit does not exist. If we let $(x, y) \to (0, 0)$ along the line $x = y$, then the limiting value is zero. However, if we let $(x, y) \to (0, 0)$ along the curve $x = y^2$ then the limiting value is $1/2$. 2
5. (20) The function

\[T(x, y, z) = x e^{-y} + z e^{-x} + y z, \text{ for } x^2 + y^2 + z^2 \leq 4, \]

gives the temperature at each point of a sphere of radius 2 centered at the origin.

(a) If you are at the origin, which direction should you head if you wanted to get cooler quickly?

\[\nabla T = (e^{-y} - z e^{-x}, -x e^{-y} + z, e^{-x} + y) \]

\[\nabla T(0, 0, 0) = (1, 0, 1). \]

Thus, to cool off the quickest, head in the direction \(- (1, 0, 1)\).

(b) The gradient of \(T \) is non-zero. What can we conclude from this about where the maximum and minimum temperatures occur?

That the extreme values occur on the boundary \(x^2 + y^2 + z^2 = 4 \), since there are no local extrema.

(c) Explain how you would go about finding the locations of the global maximum and global minimum of the function \(T \). Be sure to explicitly and carefully describe what you would do.

Use Lagrange multipliers. Set \(g(x, y, z) = x^2 + y^2 + z^2 \) and then solve the system of equations

\[\nabla T + \lambda \nabla g = \vec{0} \]

\[g = 4. \]