Problem 1 (20pts). Show that each the distance postulates $D1, D2$ and $D3$ is a consequence of the postulate $D4$.

Problem 2 (20pts). Let A, B, C, D be points in space. Show that if $A-B-C$ and $B-C-D$, then $A-B-D$ and $A-C-D$.

Problem 3 (20pts). Let A, B, C, D be points in space. Show that if $A-B-C$ and $A-D-C$, then either $A-B-D-C$, or $A-D-B-C$, or $B = D$.

Problem 4 (20pts). Given four spherical beads of different colors, in how many essentially different ways is it possible to arrange them in a string so as to make a four-bead necklace? (The string is so thin that the knot can slip through the holes in the beads. This is a problem about betweeness on a circle, and the answer indicates that the idea of betweeness on a circle is more peculiar than one might have supposed.

Problem 5 (20pts). Show that given a ray \overrightarrow{AB}, there is a coordinate system f on the line \overrightarrow{AB} such that $\overrightarrow{AB} = \{P \mid f(P) \geq 0\}$.

Problem 6 (20pts). Let A and B be two points in space, and let D, E, F be three non-collinear points. If the line \overrightarrow{AB} contains only one of the points D, E, F, prove that each of the lines $\overrightarrow{DE}, \overrightarrow{DF}$ and \overrightarrow{EF} intersects \overrightarrow{AB} in at most one point.

Problem 7 (20pts). Prove the following. If $\triangle ABC = \triangle DEF$, then each side of $\triangle ABC$ contains two of the points D, E and F.

Problem 8 (20pts). Show that A is not between any two points of the triangle $\triangle ABC$.

Problem 9 (20pts). Prove Theorem 5 (p. 66): If $\triangle ABC = \triangle DEF$, then the points A, B, C are the same as points C, D, E in some order. In other words, $\{A, B, C\} = \{D, E, F\}$.