Problem List # 1

Classical Algebraic Geometry

Remark: Assume the ground field k is algebraically closed unless stated otherwise.

Problem 1. a. Let Y be the plane curve $y = x^2$. Show that $A(Y)$ is isomorphic to a polynomial ring in one variable over k.

b. Let Z be the plane curve $xy = 1$. Show that $A(Z)$ is not isomorphic to a polynomial ring in one variable over k.

Problem 2. (The twisted cubic curve) Let $Y \subset \mathbb{A}^3$ be the set

$$Y = \{(t, t^2, t^3) \mid t \in k\}.$$

Show that Y is an affine variety of dimension 1. Find generators for the ideal $I(Y)$. Show that $A(Y)$ is isomorphic to a polynomial ring in one variable over k. (We say that Y is given by the “parametric representation” $x = t, y = t^2, z = t^3$.)

Problem 3. Let Y be the algebraic set in \mathbb{A}^3 defined by the two polynomials $x^2 - yz$ and $xz - x$. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.

Problem 4. If we identify $\mathbb{A}^1 \times \mathbb{A}^1$ with \mathbb{A}^2 in the natural way, show that the Zariski topology on \mathbb{A}^2 is not the product topology of the Zariski topologies on the two copies of \mathbb{A}^1.

Problem 5. Let $\mathfrak{A} \subset k[x_1, \ldots, x_m]$ be an ideal which can be generated by r elements. Then every irreducible component of $Z(\mathfrak{A})$ has dimension $\geq n - r$.

Problem 6. Let $Y \subset \mathbb{A}^3$ be the curve given parametrically by $x = t^3, y = t^4, z = t^5$. Show that $I(Y)$ is a prime ideal of height 2 in $k[x, y, z]$ which cannot be generated by 2 elements. (We say Y is not a local complete intersection.)

Sheaves

Problem 7. Given a morphism $\phi : \mathcal{F} \to \mathcal{G}$ of sheaves of abelian groups on a space X, we define a presheaf $\ker \phi$ on X by $(\ker \phi)(U) = \ker \{\phi_U : \mathcal{F}(U) \to \mathcal{G}(U)\}$.
a. Show that ker \(\phi \) is indeed a sheaf.

b. Show that \((\ker \phi)_P = \ker \phi_p\), and that \(\phi \) is injective (surjective) if and only if the induce maps on stalks is injective (surjective).

c. Formulate similar notions of a presheaf coker \(\phi \) and image \(\phi \), and show that they are not necessarily a sheaf, in general.

Problem 8. *(Espace étalé of a presheaf)* Given a presheaf \(\mathcal{F} \) on \(X \), we define a topological space \(\text{Spé}(\mathcal{F}) \), called the *espace étalé* of \(\mathcal{F} \), as follows. As a set, \(\text{Spé}(\mathcal{F}) = \bigcup_{P \in X} \mathcal{F}_P \). We define a projection map \(\pi : \text{Spé}(\mathcal{F}) \to X \) by sending \(s \in \mathcal{F}_P \) to \(P \in X \). For each open set \(U \subseteq X \) and each section \(s \in \mathcal{F}(U) \), we obtain a map \(\overline{s} : U \to \text{Spé}(\mathcal{F}) \) for all \(U \) by sending \(P \mapsto s_P \), its germ at \(P \). This map has that property that \(\pi \circ \overline{s} = \text{id}_U \), i.e. it is a section of \(\pi \) over \(U \). We now make \(\text{Spé}(\mathcal{F}) \) into a topological space by giving it the finest topology making all maps \(\overline{s} : U \to \text{Spé}(\mathcal{F}) \), for all \(s \in \mathcal{F}(U) \) and all \(U \subseteq X \), continuous.

a. Define \(\mathcal{F}^+ \) as the presheaf where \(\mathcal{F}^+(U) \) is the set of all continuous sections of \(\pi \) over \(U \). Show that \(\mathcal{F}^+ \) is a sheaf.

b. Show that if \(\mathcal{F} \) is itself a sheaf then \(\mathcal{F}^+ = \mathcal{F} \).

Remark: The sheaf \(\mathcal{F}^+ \) is called the sheaf associated to the presheaf \(\mathcal{F} \).

Problem 9. *(Skyscraper Sheaves)* Let \(P \) be a point in a space \(X \), and let \(A \) be an abelian group. Define a sheaf \(i_P(A) \) on \(X \) as follows: \(i_P(A)(U) = A \) if \(P \in U \) and \(i_P(A)(U) = \{0\} \), otherwise.

a. Verify that the stalk of \(i_P(A) \) is \(A \) at every point \(Q \in \overline{\{P\}} \) and \(\{0\} \) elsewhere.

b. Show that this sheaf can also be described as \(i_\ast(A) \), where \(A \) is the constant sheaf on the closed subspace \(\{P\} \), and \(i : \{P\} \to X \) is the inclusion map.

Problem 10. Exercise I-10, p. 15.

Schemes

Problem 11. Describe \(\text{Spec}(\mathbb{Z}) \) and show that each scheme \(X \) admits a unique morphism to \(\text{Spec}(\mathbb{Z}) \). In other words, \(\text{Spec}(\mathbb{Z}) \) is a final object in the category of schemes.
Problem 12. Let X be a scheme, and recall that the residue field of a point $P \in X$ is the field $k(P) = \mathcal{O}_{X,P}/\mathfrak{m}_P$. Now, let K be any field. Show that to give a morphism of $\text{Spec}(K)$ to X it is equivalent to give a point $P \in X$ and an inclusion homomorphism $k(P) \to K$.

Problem 13. If X is a topological space and Z is an irreducible closed subset of X, a generic point for Z is a point ξ such that $Z = \overline{\{\xi\}}$. If X is a scheme, show that every (nonempty) irreducible closed subset has a unique generic point.

Problem 14. Let A be a ring. Show that the following conditions are equivalent:

a. $\text{Spec}(A)$ is disconnected;

b. there exist nonzero elements e_1, e_2 of A such that $e_1 e_2 = 0$, $e_1^2 = e_1$, $e_2^2 = e_2$ and $e_1 + e_2 = 1$. (These elements are called orthogonal idempotents).

c. A is isomorphic to a direct product $A_1 \times A_2$ of two nonzero rings.
