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Abstract

Semi-graphoids are combinatorial structures that arise in statistical learning
theory. They are equivalent to convex rank tests and to polyhedral fans that coarsen
the reflection arrangement of the symmetric group Sn. In this paper we resolve two
problems on semi-graphoids posed in Studený’s book [19], and we answer a related
question of Postnikov, Reiner, and Williams on generalized permutohedra [18]. We
also study the semigroup and the toric ideal associated with semi-graphoids.

1 Introduction

A conditional independence (CI) statement over a finite set of random variables,
indexed by [n] = {1, 2, . . . , n}, is a formal symbol [i ⊥⊥ j |K] where K ⊂ [n] and
i, j ∈ [n]\K are distinct. We identify the CI statements [i ⊥⊥ j|K] and [j ⊥⊥ i|K].
The symbol [i ⊥⊥ j |K] represents the statement that the random variables i and
j are conditionally independent given the joint random variable K. For any joint
probability distribution of the n random variables, the set M of all CI statements
that are valid for the given distribution satisfies the following property:

(SG) If [i⊥⊥j |K∪ℓ] and [i⊥⊥ℓ |K] are in M then so are [i⊥⊥j |K] and [i⊥⊥ℓ |K∪j].

A semi-graphoid is any set M of CI statements which satisfies the axiom (SG). Stu-
dený’s book [19] gives an introduction to semi-graphoids and their role in statistical
learning theory. For further details and references see also Matúš [12, 14]. In this
paper we construct examples which answer two problems stated by Studený:

(Q1) Is it true that every coatom of the lattice of (disjoint) semi-graphoids over [n]
is a structural independence model over [n]? [19, Question 4, page 194]
(Q2) Is every structural imset over [n] already a combinatorial imset over [n]?

[19, Question 7, page 207]

Our approach is based on the geometric characterization of semi-graphoids in
[16]. Let Πn−1 denote the (n−1)-dimensional permutohedron [13, 22], which is the
convex hull of all permutations of (1, . . . , n). Each vertex of Πn−1 is labeled with
a descent permutation (δ1, . . . , δn) as in [16]. Two descent permutations δ, δ′ are
adjacent if they differ by an adjacent transposition, i.e. for some index k we have
δk = δ′k+1, δk+1 = δ′k, and δi = δ′i for i 6∈ {k, k + 1}. Adjacent permutations label
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vertices which are adjacent in the edge graph of Πn−1. We label the edge represent-
ing this unordered pair {δ, δ′} with the conditional independence (CI) statement:

δk ⊥⊥ δk+1 | {δ1, . . . , δk−1}. (1)

We also identify any set M of CI statements with the set of edges of Πn−1 bearing
it as a label, keeping in mind that opposite edges of a square have the same CI
statement as their label.

Let Cn = [0, 1]n denote the standard n-dimensional cube. The vertices of Πn−1

are in bijection with the monotone edge paths from (0, 0, . . . , 0) to (1, 1, . . . , 1) on
the cube Cn. A vertex of Πn−1 labeled δ1, . . . , δn corresponds to the monotone
path [eδ1 , eδ1 + eδ2 , . . . ,

∑n
i=1 eδi

] where ei denotes the i-th unit vector in Rn. The
2-dimensional faces of Cn are in bijection with the CI statements on [n]. Namely,
[i ⊥⊥ j |K] represents the 2-face of Cn with xk = 1 for k ∈ K and xl = 0 for
l ∈ [n]\(K ∪{i, j}). The number of these 2-cubes equals γn :=

(

n
2

)

2n−2. There is a
natural surjective mapping from the edges of Πn−1 onto the 2-faces of Cn, which as
with the labeling by CI statements is not injective. Under this mapping, an edge of
Πn−1 corresponds to a pair of adjacent monotone edge paths on Cn. These adjacent
paths differ only along a 2-cube [i⊥⊥ j |K]. In this manner, we identify any set M
of CI statements on [n] with a set of 2-cubes on the boundary of Cn. Each 2-face of
the permutohedron Πn−1 is either a square or a hexagon. By [16], the semi-graphoid
axiom is equivalent to the following geometric condition on the edges of Πn−1:

(SG′) If two adjacent edges of a hexagon are in M then so are their two opposites.

• •
•

••
•




 =⇒
• •

•
••

•











The normal fan of the permutohedron Πn−1 is the reflection arrangement of Sn.
Theorem 3 in [16] identifies semi-graphoids with fans that coarsen this arrangement.
Such fans are called convex rank tests. Namely, M specifies the set of edges of Πn−1

whose dual walls in the normal fan are not present in the convex rank test.
A basic question about any semi-graphoid M is whether its corresponding convex

rank test is submodular, in other words, whether it is the normal fan of a polytope.
That polytope would then be a Minkowski summand [22] of the permutohedron
Πn−1; see [16] or [18, Proposition 3.2]. Polytopes that are Minkowski summands of
Πn−1 are known as generalized permutohedra and they were studied in [17, 18].

Studený’s first question has the following geometric translations:

(Q1) Is every nontrivial coarsest convex rank test submodular?
(Q1) Is every nontrivial fan which maximally coarsens the Sn-arrangement the nor-
mal fan of a generalized permutohedron?

In the first version of [18], Postnikov, Reiner and Williams asked a similar question:
(Q3) Is every simplicial fan which coarsens the Sn-arrangement the normal fan of
a simple generalized permutohedron?

This paper answers all three questions. In Section 2 we derive and explain our
counterexample for Question (Q3). That example is discussed in [18, Example 3.8].
By Studený’s classification [20] of the 26424 semi-graphoids for n = 4, it had been
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known that the answers to Questions (Q1) and (Q2) are affirmative for n ≤ 4. In
Sections 3 and 4 we construct counterexamples for (Q1) and (Q2) with n = 5.

Question (Q2) has the following reformulation in the setting of toric algebra [15,
§7]. We represent the semi-graphoid axiom as an equation among formal symbols:

(SG′′) [i⊥⊥j |K ∪ ℓ] + [i⊥⊥ℓ |K] = [i⊥⊥j |K] + [i⊥⊥ℓ |K ∪ j]

for all i, j, l,K. These relations span the kernel of the linear map

A : Zγn → Z2n

, [i⊥⊥j |K] 7→ eiK + ejK − eK − eijK . (2)

A semi-graphoid is a solution to the equations (SG′′) in the semiring {0,++}, rep-
resenting “zero” and “positive”. In this semiring we have addition: ++ +x = ++ and
0 + x = x, as well as multiplication: 0 · x = 0 and ++ · ++ = ++. A semi-graphoid
is submodular if it is the set of zero coordinates of a solution to (SG′′) over the
non-negative real numbers. Then there exists a submodular function (i.e., a point
in the deformation cone in the appendix of [18]) giving rise to the semi-graphoid
as the normal fan of the polytope Qw [16]. These definitions furnish us with an
algebraic representation of a semi-graphoid M and a systematic method for testing
submodularity of M by linear programming. Studený’s question (Q2) concerns the
N-linear span of the columns of the matrix A:

(Q2) Is the semigroup A(Nγn) normal, i.e., does it coincide with A(Rγn

≥0) ∩ Z2n

?

For more on normal semigroups and their interactions with polyhedral geometry
and toric varieties, see [15]. In Section 5 we study the toric ideal [21] of A in a
polynomial ring in γn unknowns, and we examine how it differs from the subideal
generated by the binomials

(SG′′′) [i⊥⊥j |K ∪ ℓ] · [i⊥⊥ℓ |K] − [i⊥⊥j |K] · [i⊥⊥ℓ |K ∪ j].

Proposition 5.1 describes the primary decomposition of this binomial ideal for n = 4.
We also discuss the problem of deriving the full Markov basis from (SG′′′).

2 A non-submodular simplicial semi-graphoid

Let n = 4 and consider the 4-dimensional cube C4 and the 3-dimensional permuto-
hedron Π3. Each hexagon on Π3 corresponds to one of the eight facets of C4. Each
facet specifies three instances of the semi-graphoid axioms, written as in (SG′′):

[[1⊥⊥2|∅]] + [2⊥⊥3|1] = [2⊥⊥3|∅] + [1⊥⊥2|3] ⇐=
(∗, ∗, ∗, 0) [1⊥⊥3|∅] + [1⊥⊥2|3] = [[1⊥⊥2|∅]] + [1⊥⊥3|2]

[1⊥⊥3|∅] + [2⊥⊥3|1] = [2⊥⊥3|∅] + [1⊥⊥3|2]

[[1⊥⊥2|∅]] + [2⊥⊥4|1] = [2⊥⊥4|∅] + [1⊥⊥2|4]
(∗, ∗, 0, ∗) [[1⊥⊥2|∅]] + [1⊥⊥4|2] = [1⊥⊥4|∅] + [1⊥⊥2|4]

[1⊥⊥4|∅] + [2⊥⊥4|1] = [2⊥⊥4|∅] + [1⊥⊥4|2]
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[1⊥⊥3|∅] + [1⊥⊥4|3] = [1⊥⊥4|∅] + [1⊥⊥3|4]
(∗, 0, ∗, ∗) [[3⊥⊥4|∅]] + [1⊥⊥3|4] = [1⊥⊥3|∅] + [3⊥⊥4|1]

[[3⊥⊥4|∅]] + [1⊥⊥4|3] = [1⊥⊥4|∅] + [3⊥⊥4|1] ⇐=

[2⊥⊥3|∅] + [3⊥⊥4|2] = [[3⊥⊥4|∅]] + [2⊥⊥3|4]
(0, ∗, ∗, ∗) [2⊥⊥4|∅] + [2⊥⊥3|4] = [2⊥⊥3|∅] + [2⊥⊥4|3]

[[3⊥⊥4|∅]] + [2⊥⊥4|3] = [2⊥⊥4|∅] + [3⊥⊥4|2]

[3⊥⊥4|1] + [[2⊥⊥3|14]] = [2⊥⊥3|1] + [3⊥⊥4|12] ⇐=
(1, ∗, ∗, ∗) [2⊥⊥4|1] + [[2⊥⊥3|14]] = [2⊥⊥3|1] + [2⊥⊥4|13]

[2⊥⊥4|1] + [3⊥⊥4|12] = [3⊥⊥4|1] + [2⊥⊥4|13]

[1⊥⊥3|2] + [3⊥⊥4|12] = [3⊥⊥4|2] + [1⊥⊥3|24]
(∗, 1, ∗, ∗) [1⊥⊥3|2] + [[1⊥⊥4|23]] = [1⊥⊥4|2] + [1⊥⊥3|24]

[3⊥⊥4|2] + [[1⊥⊥4|23]] = [1⊥⊥4|2] + [3⊥⊥4|12]

[1⊥⊥2|3] + [[1⊥⊥4|23]] = [1⊥⊥4|3] + [1⊥⊥2|34] ⇐=
(∗, ∗, 1, ∗) [1⊥⊥4|3] + [2⊥⊥4|13] = [2⊥⊥4|3] + [[1⊥⊥4|23]]

[1⊥⊥2|3] + [2⊥⊥4|13] = [2⊥⊥4|3] + [1⊥⊥2|34]

[1⊥⊥3|4] + [[2⊥⊥3|14]] = [2⊥⊥3|4] + [1⊥⊥3|24]
(∗, ∗, ∗, 1) [1⊥⊥2|4] + [1⊥⊥3|24] = [1⊥⊥3|4] + [1⊥⊥2|34]

[1⊥⊥2|4] + [[2⊥⊥3|14]] = [2⊥⊥3|4] + [1⊥⊥2|34].

This is a system of 24 equations in γ4 = 24 formal symbols [i⊥⊥j |K].
A semi-graphoid is a solution to these equations over the semiring {0,++}. More

precisely, given such a solution vector in {0,++}24, the semi-graphoid M consists of
all coordinates [i⊥⊥ j |K] that have the value 0. There are 26424 semi-graphoids.
They form a sublattice of the Boolean lattice {0,++}24, with ++ < 0. Question (Q1)
concerns the coatoms of this lattice. But let us first resolve Question (Q3).

We consider the following collection of CI statements:

M =
{

[[2 ⊥⊥ 3 | 14]], [[1 ⊥⊥ 4 | 23]], [[1 ⊥⊥ 2 | ∅]], [[3 ⊥⊥ 4 | ∅]]
}

. (3)

These four symbols are highlighted in the 24 equations above by the use of double
brackets [[ · · · ]]. Each equation (individually) can be solved among the positive
reals after these four symbols have been set to zero, or equivalently they can be
solved as a system over {0,++}. This shows that M is a semi-graphoid.

The semi-graphoid M is represented geometrically by the three-dimensional
polytope in Figure 1. This polytope is simple, i.e., each of the 16 vertices is ad-
jacent to three other vertices. The eight vertices whose labels include three bars
(such as 4|2|1|3) correspond to unique permutations in S4 (namely the descent per-
mutation 4213), while the eight vertices whose labels have two bars (such as 4|1|23)
correspond to pairs of permutations in S4 (namely descent permutations 4123 and
4132). This partition of S4 into eight singletons and eight pairs is the convex rank
test corresponding to the semi-graphoid M under the bijection of [16]. The normal
fan of the polytope in Figure 1 is a simplicial fan which is combinatorially (but not
geometrically) isomorphic to a fan that coarsens the hyperplane arrangement of S4.

4



3|2|14
◦

2|3|14
•

12|3|4
•

12|4|3•

34|1|2◦

34|2|1
◦

4|1|23
•

1|4|23
•

3|1|2|4◦

2|4|3|1
•

1|3|2|4•

3|1|4|2
◦

2|4|1|3
•

4|2|3|1•

1|3|4|2•
4|2|1|3

•

◦
◦
◦
◦
◦
◦
◦
◦

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

••••••••••••••••••

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

FFFFFFFFFFFFFFFFF

BB
BB

BB
BB

BB
BB

BB
BB

B��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
� ))

))
))

))
))

))
))

))
))

uuuuuuuuuuuuuuuuuuuuu

��
��
��
��
�

DD
DD

DD
DD

DD
D

$$
$$
$$
$$
$$
$$
$$
$$

VVVVVVVVVVVVVVVVV

gggggggggggggggggggggg

||
||

||
||

||
||

||
||

Figure 1: A simple 3-dimensional polytope with 16 vertices and 10 facets

Proposition 2.1. The simplicial semi-graphoid M is not submodular.

Proof. Suppose that M were submodular. Then the above equations have a solution
in (R≥0)

24 whose coordinates in M are zero and whose other 20 coordinates are
positive. The four equations marked by an “⇐=” give the following four equations:

[2⊥⊥3|1] = [2⊥⊥3|∅] + [1⊥⊥2|3]
[1⊥⊥4|3] = [1⊥⊥4|∅] + [3⊥⊥4|1]
[3⊥⊥4|1] = [2⊥⊥3|1] + [3⊥⊥4|12]
[1⊥⊥2|3] = [1⊥⊥4|3] + [1⊥⊥2|34].

Adding the left hand sides and the right hand sides of the four equations yields

[2⊥⊥3|∅] + [1⊥⊥4|∅] + [3⊥⊥4|12] + [1⊥⊥2|34] = 0.

This contradicts the assumption that these four values are strictly positive.

The set of non-negative solutions to the 24 equations (SG′′) is an 11-dimensional
cone in (R≥0)

24. This cone is isomorphic to the 16-dimensional cone of submodular
functions on 2[4], modulo its 5-dimensional lineality space. Its 22108 faces are in
bijection with the submodular semi-graphoids, or, equivalently, with the generalized
permutohedra for n = 4. In addition to these, there are 4316 semi-graphoids that are
not submodular. Each of the latter can be represented by a polytope of dimension
≤ 3 as in Figure 1. These polytopes have the combinatorial properties of generalized
permutohedra [18], but they cannot be realized as Minkowski summands of Π3. For
example, see [11, Figure 5] for a polytope that represents Studený’s example of a
semi-graphoid that is not submodular (see [16] and [19, Section 2.2.4]).
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We now give a classification of non-submodular semi-graphoids for n = 4 and
|M| small. All simplicial examples are coarsenings (up to relabeling) of the partic-
ular semi-graphoid M in Proposition 2.1. The following table lists the number of
semi-graphoids classified by number of CI statements, their type, and whether they
are simplicial. Here, the type of a semi-graphoid is the triple (m0,m1,m2) where
mt is the number of CI statements [i⊥⊥j |K] in M such that |K| = mt.

|M| type non-simplicial simplicial total

3 ( 0 , 3 , 0 ) 8 0 8

4 ( 0 , 4 , 0 ) 78 0 78

4 ( 1 , 2 , 1 ) 30 0 30

4 ( 2 , 0 , 2 ) 0 6 6

5 ( 0 , 5 , 0 ) 300 0 300

5 ( 1 , 2 , 2 ) 30 0 30

5 ( 1 , 3 , 1 ) 84 0 84

5 ( 2 , 0 , 3 ) 12 12 24

5 ( 2 , 2 , 1 ) 30 0 30

5 ( 3 , 0 , 2 ) 24 0 24

6 ( 0 , 6 , 0 ) 604 0 604

6 ( 1 , 3 , 2 ) 84 0 84

6 ( 1 , 4 , 1 ) 78 0 78

6 ( 2 , 0 , 4 ) 30 3 33

6 ( 2 , 2 , 2 ) 30 0 30

6 ( 2 , 3 , 1 ) 84 0 84

6 ( 3 , 0 , 3 ) 74 12 96

6 ( 4 , 0 , 2 ) 30 3 33

7 ( 0 , 7 , 0 ) 684 0 684

7 ( 1 , 4 , 2 ) 78 0 78

7 ( 1 , 5 , 1 ) 24 0 24

7 ( 2 , 0 , 5 ) 18 0 18

7 ( 2 , 3 , 2 ) 84 0 84

7 ( 2 , 4 , 1 ) 78 0 78

7 ( 3 , 0 , 4 ) 132 0 132

7 ( 4 , 0 , 3 ) 132 0 132

7 ( 5 , 0 , 2 ) 18 0 18

8 ( 0 , 8 , 0 ) 450 0 450

8 ( 1 , 5 , 2 ) 24 0 24

8 ( 2 , 0 , 6 ) 3 0 3

8 ( 2 , 4 , 2 ) 48 0 48

8 ( 2 , 5 , 1 ) 24 0 24

8 ( 3 , 0 , 5 ) 72 0 72

8 ( 4 , 0 , 4 ) 174 0 174

8 ( 5 , 0 , 3 ) 72 0 72

8 ( 6 , 0 , 2 ) 3 0 3
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|M| type non-simplicial simplicial total

9 ( 0 , 9 , 0 ) 212 0 212

9 ( 3 , 0 , 6 ) 12 0 12

9 ( 4 , 0 , 5 ) 84 0 84

9 ( 5 , 0 , 4 ) 84 0 84

9 ( 6 , 0 , 3 ) 12 0 12

10 ( 0 , 10 , 0 ) 60 0 60

10 ( 4 , 0 , 6 ) 15 0 15

10 ( 5 , 0 , 5 ) 24 0 24

10 ( 6 , 0 , 4 ) 15 0 15

11 ( 0 , 11 , 0 ) 12 0 12

11 ( 5 , 0 , 6 ) 6 0 6

11 ( 6 , 0 , 5 ) 6 0 6

3 A non-submodular coarsest semi-graphoid

We now consider the case n = 5. There are γ5 = 80 CI statements, one for each
two-dimensional face of the 5-cube C5. There are 120 instances of the semi-graphoid
axioms (SG′′), three for each of the 40 three-dimensional faces of C5, listed as ad-
ditive equations in the Appendix. The semi-graphoids are the solutions of these
equations over {0,++}80. These solutions include the all-zero vector 0 which rep-
resents the semi-graphoid that consists of all 80 CI statements, and which is the
maximal element in the lattice of semi-graphoids. A semi-graphoid is said to be
coarsest if it is maximal among non-0 semi-graphoids. Geometrically, such a semi-
graphoid corresponds to a fan which coarsens the S5-arrangement but cannot be
coarsened to a non-trivial fan.

We now present the counterexample which answers question (Q1). Our con-
structions make use of the identification of semi-graphoids with convex rank tests
that was derived in [16]. Let Γ denote the partition of the symmetric group S5 into
fourteen classes as follows. There are eight classes containing 12 permutations each:

15|234 234|15 123|45 235|14
124|35 245|13 134|25 345|12.

And there are six classes containing four permutations each:

12|5|34 25|1|34 13|5|24
35|1|24 14|5|23 45|1|23.

Here 15|234 denotes the class of all descent permutations ijklm with {i, j} = {1, 5}
and {k, l,m} = {2, 3, 4}. Similarly, 45|1|23 denotes the class of all permutations
ijklm with {i, j} = {4, 5}, k = 1, and {l,m} = {2, 3}. Clearly, Γ is a pre-convex
rank test, as each of the 14 classes is the set of all linear extensions of a poset on
{1, 2, 3, 4, 5}. Note that the subgroup of S5 fixing the pre-convex rank test Γ has
order 12, because Γ is fixed under permutations of {1, 5} and of {2, 3, 4}. The 14
classes of Γ are represented by the 14 vertices of the polytope depicted in Figure 2.
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Figure 2: Schlegel diagram [22] of a 4-dimensional polytope with 10 facets

Each pair of permutations in a given class of Γ which differ by an adjacent
transposition specifies a CI statement. For instance, the four-element class 45|1|23
specifies the two CI statements [[4⊥⊥5|∅]] and [[2⊥⊥3|145]], while the 12-element class
15|234 specifies the seven CI statements

[[1⊥⊥5|∅]], [[2⊥⊥3|15]], [[2⊥⊥3|145]], [[2⊥⊥4|15]], [[2⊥⊥4|135]], [[3⊥⊥4|15]], [[3⊥⊥4|125]].

Altogether, we obtain 44 CI statements [[· | ·]] from the 14 classes, and we identify
the pre-convex rank test Γ with the set of these 44 CI statements. We now prove:

Theorem 3.1. Γ is a coarsest convex rank test which is not submodular.

Proof. To establish this theorem, we must prove the following three claims:

• Γ is a convex rank test, i.e. it satisfies the semi-graphoid axiom (SG).

• There is no proper convex rank test which is coarser than Γ.

• The convex rank test Γ is not submodular.

We shall prove all three statements at once, by examining the semi-graphoid equa-
tions (SG′′). As in Section 2, the 44 symbols in Γ are denoted with double brackets
[[ · | · ]], while the 36 symbols not in Γ are denoted with brackets [ · | · ]. With this
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distinction, there are four symmetry types of semi-graphoid equations that involve
the 36 positive unknowns [ · | · ]. The full list is given in the Appendix:

Type I [3⊥⊥5|12] + [[3⊥⊥4|125]] = [3⊥⊥4|12] + [[3⊥⊥5|124]]
Type II [1⊥⊥5|2] + [1⊥⊥3|25] = [[1⊥⊥3|2]] + [1⊥⊥5|23]
Type III [4⊥⊥5|1] + [2⊥⊥5|14] = [2⊥⊥5|1] + [4⊥⊥5|12]
Type IV [1⊥⊥2|5] + [[2⊥⊥3|15]] = [[2⊥⊥3|5]] + [1⊥⊥2|35]

After setting the 44 unknowns [[ · | · ]] to zero, we are left with 120 equations in the
36 strictly positive unknowns. For instance, the first three types give

Type I [3⊥⊥5|12] = [3⊥⊥4|12]
Type II [1⊥⊥5|2] + [1⊥⊥3|25] = [1⊥⊥5|23]
Type III [4⊥⊥5|1] + [2⊥⊥5|14] = [2⊥⊥5|1] + [4⊥⊥5|12]

The axiom (SG′′) merely requires that each of these equations is individually
solvable. This is obviously the case. Hence Γ is a semi-graphoid.

The 78 equations of Type I listed in the Appendix imply that all 36 positive
unknowns must be equal. So, if another CI statement is added to the semi-graphoid
Γ, then all others must be added in order for (SG) to remain valid. This proves our
second claim that Γ is a coarsest convex rank test.

Given that the 36 unknowns [ · | · ] must be equal, the 12 Type II equations imply
that their common value is zero, contradicting the requirement that they be positive.
Hence the 120 original equations altogether have no non-negative real solution that
is consistent with Γ. This proves our third claim that Γ is not submodular.

Every semi-graphoid for n = 5 corresponds to a 4-dimensional fan. Intersecting
this fan with a sphere around the origin, we obtain a polyhedral cell decomposition
of the 3-dimensional sphere. We do not know whether each of these 3-spheres can
be realized as the boundary of a 4-dimensional polytope. However, using [22, §5],
every semi-graphoid can be represented by a 3-dimensional diagram as in Figure 2.

For the specific semi-graphoid Γ of Theorem 3.1, the diagram in Figure 2 is
indeed the boundary of a 4-polytope with f -vector [22] (14, 36, 32, 10). As with the
polytope of Section 3, this polytope only combinatorially rather than geometrically
represents Γ because Γ is not submodular. The following coordinates for this poly-
tope were found by a direct calculation, using the techniques described in [3]. Each
of the following ten row vectors represents a facet of our polytope:

POINTS

1 1/4 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

1 -1/4 1/4 1/4 5/4 1/4

1 280/893 -280/893 25/893 0 28/893

1 1/57 1/57 -1/57 17/19 2/57

1 1 1 0 -5 1
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1 2/37 20/37 1/37 10/37 -2/37

For instance, the last row represents the facet-defining inequality

2

37
· x1 +

20

37
· x2 +

1

37
· x3 +

10

37
· x4 −

2

37
· x5 ≤ 1.

Here, we are considering the vectors (x1, x2, x3, x4, x5) to be elements in the quotient
of R5 modulo the one-dimensional linear subspace spanned by (4, 1, 1, 1, 1). Our
format is that of the software Polymake [9]. If the above eleven lines are put in a
file named mypolytope then the following command in Polymake will verify that
this polytope does indeed have the combinatorial structure displayed in Figure 2:

polymake mypolytope F_VECTOR VERTICES_IN_FACETS

The 10 facets of our 4-polytope correspond to the facets of the 5-cube, and they
comprise all classes of permutations in S5 in which the first or last coordinate is
fixed. The facets corresponding to permutations with 1 or 5 in the first coordinate
have seven vertices, twelve edges, and eight 2-faces. The facets corresponding to
permutations with 2, 3 or 4 first have seven vertices, 13 edges, and eight 2-faces.
The facets for 1 or 5 last are tetrahedra. The facets for 2, 3 or 4 last are cubes in
which one edge has been contracted; they have seven vertices and 11 edges.

4 The semi-graphoid semigroup is not normal

Continuing to assume n = 5, we now consider the linear map A in the Introduction.
It maps the free abelian group Z80 spanned by the CI statements to the free abelian
group Z32 with basis {eK : K ⊆ [5]} as specified in (2). The matrix representing A
has 32 rows and 80 columns; each column has four non-zero entries: two +1’s and
two −1’s. The rank of A is 26. The semi-graphoid semigroup is A(N80), the non-
negative integer span of the columns of this 32× 80-matrix. This is a subsemigroup
of Z32. Equivalently, the semi-graphoid semigroup is the affine semigroup with 80
generators and 120 relations (given in the Appendix). Note that the polyhedral
cone dual to the semi-graphoid semigroup is the cone of submodular functions.

In the paper [19] (up to a sign change), the vectors in Z32 are called imsets, the
columns of A are elementary imsets, and the elements of A(N80) are combinatorial
imsets. A structural imset is a lattice point which lies in the polyhedral cone spanned
by the elementary imsets. Studený’s question (Q2) whether each structural imset is
combinatorial translates into the question whether the semigroup A(N80) is normal.

Theorem 4.1. The semi-graphoid semigroup is not normal for n = 5.

Proof. Consider the following element in the free abelian group Z80:

[1⊥⊥5|2] + [1⊥⊥4|3] + [2⊥⊥3|4] + [2⊥⊥3|5] + [3⊥⊥4|12]
+[2⊥⊥5|13] + [1⊥⊥2|45] + [1⊥⊥3|45] + [4⊥⊥5|23] − [2⊥⊥3|45].

(4)

The image of this element under the map A : Z80 → Z32 is the imset

b := −e2 − e3 − e4 − e5 − e23 + e24 + 2e25 + 2e34 + e35 − e45 + 2e123

+e124 − e125 − e134 + e135 + 2e145 − e1234 − e1235 − e1245 − e1345.
(5)
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The imset b is structural because 2 · b is a combinatorial imset. It is the image of

[4⊥⊥5|2] + [4⊥⊥5|3] + [1⊥⊥3|4] + [1⊥⊥2|5] + [2⊥⊥5|14] + [3⊥⊥4|15]
+[1⊥⊥4|23] + [1⊥⊥5|23] + [1⊥⊥5|2] + [1⊥⊥4|3] + [2⊥⊥3|4]

+[2⊥⊥3|5] + [3⊥⊥4|12] + [2⊥⊥5|13] + [1⊥⊥2|45] + [1⊥⊥3|45] ∈ N80
(6)

under the linear map A.
Suppose that b were a combinatorial imset. Then there exists x ∈ N80 such

that A · x = b. We write x =
∑

i[ai⊥⊥bi|Ki], where we allow repetition in the
sum. In any elementary imset, the basis vector e∅ occurs with coefficient −1 or 0,
and the basis vector e12345 occurs with coefficient −1 or 0. However, neither e∅ nor
e12345 appears in the imset b, so we conclude that |Ki| = 1 or |Ki| = 2 for all terms
[ai⊥⊥bi|Ki] in the representation of x. The first four terms −e2 − e3 − e4 − e5 in
b imply that x has precisely four terms [ai⊥⊥bi|Ki] with |Ki| = 1, and the terms
−e1234 − e1235 − e1245 − e1345 imply that x has precisely four terms with |Ki| = 2.

Each of the eight terms in x evaluates to an alternating sum of 4 terms under
the map A. Some cancellation occurs among the resulting 32 terms. Prior to that
cancellation, our imset had been written as the sum of two subsums, b = A · x =

−e2 − e3 − e4 − e5 + e24 + 2e25 + 2e34 + e35 + eA1 + eA2 − e125 − e134 − eB1 − eB2

−e23−e45−eA1−eA2+2e123+e124+e135+2e145+eB1+eB2−e1234−e1235−e1245−e1345,

where |A1| = |A2| = 2 and |B1| = |B2| = 3. The first line is the sum of the four
elementary imsets A([ai⊥⊥bi|Ki]) with |Ki| = 1, and the second line is the sum of
the four elementary imsets with |Ki| = 2. A contradiction will arise when we try
to determine the unknown pairs A1 and A2. The term −e125 in the first line must
come from Ki = {2} or Ki = {5}. This implies that either {1, 2} or {1, 5} is in
A∗ = {A1, A2}. Similarly, the term −e134 shows that either {1, 3} or {1, 4} is in A∗.
Now consider the second line. The presence of the term 2e123 implies that {1, 2} or
{1, 3} is in A∗, and the term 2e145 implies that {1, 4} or {1, 5} is in A∗. The term
e124 shows that {1, 2}, {1, 4}, or {2, 4} is in A∗, and, finally, the term e135 shows
that {1, 3}, {1, 5}, or {3, 5} is in A∗. However, no such pair of pairs A∗ satisfies
these six restrictions. This proves that b is not a combinatorial imset.

The main point of the above proof was to show that the linear system A·x = b

has no solution with non-negative integer coordinates. This can also be verified
automatically using integer programming software. In fact, using such software we
found that A · x = b has only one solution with non-negative real coordinates,
namely, that unique solution x ∈ (R≥0)

80 is the expression in (6) scaled by 1/2.
The reader might now inquire how the imset b was found. There are several

algorithms that test whether a given affine semigroup is normal, including one re-
cently proposed by Takemura, Yoshida and the first author [10], and the method of
Bruns and Koch [4] which is implemented in their software normaliz.

Our original attempts to apply these methods directly to the 32 × 80-matrix A
were unsuccessful. Instead we succeeded by partially computing a Markov basis for
the matrix A using the software 4ti2 [1]. The imset b was found by inspecting the
partial results produced by 4ti2. By now, we have computed the full Markov using
an improved version of 4ti2. We explain the details in the next section.
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5 Computations in toric algebra

Let Q[CIn] denote the polynomial ring over the field of rational numbers Q generated
by the symbols [i⊥⊥j |K]. Thus Q[CIn] is a polynomial ring in γn unknowns, one for
each 2-face of the n-cube Cn. We write

∏

CIn for the product of all the unknowns.
We define the semi-graphoid ideal to be the ideal ISG generated by the binomials in
(SG′′′). Thus the generators of ISG represent the semi-graphoid axioms. Following
[15, §7], we introduce the toric ideal IA which is a prime ideal obtained from ISG

by saturation:

IA :=
(

ISG : (
∏

CIn)∞
)

. (7)

The binomials in IA represent the vectors in the kernel of the linear map A : Zγn →
Z2n

. A minimal set of binomials which generates IA is said to be a Markov basis for
the matrix A. See [5] for a discussion of Markov bases in the context of statistics.

Let us illustrate these concepts for n = 3. The polynomial ring Q[CI3] has six
unknowns, one for each facet of the 3-cube. They are the entries of the 2×3-matrix

(

[1⊥⊥2|∅] [1⊥⊥3|∅] [2⊥⊥3|∅]
[1⊥⊥2|3] [1⊥⊥3|2] [2⊥⊥3|1]

)

. (8)

The semi-graphoid ideal ISG is generated by the three 2×2-minors of the matrix (8).
This is a prime ideal of codimension 2 and degree 3, and hence we have ISG = IA.
See e.g. Eisenbud [6]for definitions of these concepts. Here the Markov basis for A
consists precisely of the three semi-graphoid axiom instances.

We next consider the case n = 4. The polynomial ring Q[CI4] has 24 unknowns,
one for each 2-face of the 4-cube. They are the entries of eight 2 × 3-matrices as in
(8), one for each of the eight facets of the 4-cube. Thus the semi-graphoid ideal ISG

is generated by 24 quadrics, one for each of the 24 axiom instances (SG′′) in the
list given in Section 2. For instance, the last instance in that list translates into the
quadric [1⊥⊥2|4] · [2⊥⊥3|14] − [2⊥⊥3|4] · [1⊥⊥2|34], which is one of the 24 generators
of ISG. Using the software Macaulay2 [8] we derived the following result:

Proposition 5.1. The semi-graphoid ideal ISG for n = 4 is a radical ideal which is
the intersection of the toric ideal IA and 17 additional associated monomial prime
ideals.

Before discussing this prime decomposition in detail, let us make a few general
remarks. We wish to argue that toric algebra and algebraic geometry provide useful
algorithmic tools for the research directions presented in [19]. For any ideal I of
Q[CIn] and any subset Ω of C, the variety VΩ(I) is defined as the set of all vectors
in Ωγn which are common zeros of all the polynomials in I. Then VC(ISG) is a
complex variety, reducible for n ≥ 4, one of whose irreducible components is the
complex toric variety VC(IA). Inside this toric variety are the real toric variety
VR(IA). Its non-negative part VR≥0

(IA) is homeomorphic to the cone spanned by
the elementary imsets. Our next result shows that the semi-graphoids are precisely
the points on these varieties whose coordinates are 0 or 1.

Theorem 5.2. The semi-graphoids on the set [n] are in bijection with the points
in V{0,1}(ISG). The submodular semi-graphoids on [n] are in bijection with the points
in V{0,1}(IA).
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Proof. We replace the additive semiring {0,++} with the multiplicative semiring
{1, 0}. This translates from the additive notation (SG′′) to the multiplicative no-
tation (SG′′′). With this translation, the first statement in Theorem 5.2 is obvious.

The second statement is less obvious and is based on the geometry of toric
varieties. Specifically, we shall use the characterization of facial index sets which is
developed in [7]. If we consider our specific 2n×γn-matrix A then the role of the set
{1, . . . ,m} in [7] is played by the set of CI statements, and a subset of CI statements
is facial for A if and only if it is submodular semi-graphoid. With this observation,
our second assertion follows from Lemma A.2 in the Appendix of [7].

Using Theorem 5.2, we can study semi-graphoids by studying the zero-dimen-
sional ideals obtained by adding 〈x2 − x : x ∈ CIn 〉 to the ideal ISG or IA. With
the command degree in Macaulay2 [8], it takes only a few seconds to compute

#V{0,1}(ISG) = 26424 and #V{0,1}(IA) = 22108. (9)

The difference between these numbers is explained geometrically by the prime de-
composition in Proposition 5.1, which we shall now describe in explicit terms.

The 17 associated monomial primes of ISG come in three symmetry classes.
First there are two primes of codimension 12. A representative is the ideal

〈

[1⊥⊥2|∅], [1⊥⊥3|∅], [1⊥⊥4|∅], [2⊥⊥3|∅], [2⊥⊥4|∅], [3⊥⊥4|∅],
[3⊥⊥4|12], [2⊥⊥4|13], [2⊥⊥3|14], [1⊥⊥4|23], [1⊥⊥3|24], [1⊥⊥2|34]

〉

.

The semi-graphoid ideal ISG has 12 associated primes of codimension 15, such as
〈

[1⊥⊥2|∅], [1⊥⊥3|∅], [1⊥⊥4|∅], [3⊥⊥4|∅], [1⊥⊥3|2], [1⊥⊥4|2], [3⊥⊥4|2], [1⊥⊥2|3],
[2⊥⊥4|3], [1⊥⊥2|4], [2⊥⊥3|4], [3⊥⊥4|12], [2⊥⊥4|13], [2⊥⊥3|14], [1⊥⊥2|34]

〉

.

Next, ISG has three associated primes of codimension 16. A representative is
〈

[1⊥⊥2|∅], [1⊥⊥3|∅], [2⊥⊥4|∅], [3⊥⊥4|∅], [2⊥⊥4|1], [3⊥⊥4|1], [1⊥⊥3|2], [3⊥⊥4|2],
[1⊥⊥2|3], [2⊥⊥4|3], [1⊥⊥2|4], [1⊥⊥3|4], [3⊥⊥4|12], [2⊥⊥4|13], [1⊥⊥3|24], [1⊥⊥2|34]

〉

.

Each of the 4316 non-submodular semi-graphoids is a {0, 1}-valued point not in
V (IA) but in one of the 17 coordinate subspaces corresponding to these primes.

The last associated prime of ISG is the toric ideal IA. This ideal has codimension
13 and degree 396. Its minimal generating set consists of 52 binomials. Besides the
24 quadrics (axiom instances), the Markov basis of A contains four cubics

[2⊥⊥3|1] · [3⊥⊥4|2] · [1⊥⊥3|4] − [3⊥⊥4|1] · [1⊥⊥3|2] · [2⊥⊥3|4],
[2⊥⊥3|1] · [2⊥⊥4|3] · [1⊥⊥2|4] − [2⊥⊥4|1] · [1⊥⊥2|3] · [2⊥⊥3|4],
[1⊥⊥3|2] · [1⊥⊥4|3] · [1⊥⊥2|4] − [1⊥⊥4|2] · [1⊥⊥2|3] · [1⊥⊥3|4],
[2⊥⊥4|1] · [3⊥⊥4|2] · [1⊥⊥4|3] − [3⊥⊥4|1] · [1⊥⊥4|2] · [2⊥⊥4|3],

and 24 quartics such as

[1⊥⊥2|∅] · [3⊥⊥4|∅] · [2⊥⊥4|13] · [1⊥⊥3|24] − [1⊥⊥3|∅] · [2⊥⊥4|∅] · [3⊥⊥4|12] · [1⊥⊥2|34].

These cubics and quartics correspond to the non-semi-graphoid properties (A.6)
and (A.7) in [20].
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We now come to the case n = 5. It will be a challenge for future commutative
algebra software to compute a primary decomposition of the semi-graphoid ideal
ISG for n = 5. At present we do not know even whether ISG is radical. Let us
therefore focus on the main component of this ideal, namely, the toric ideal IA.

We succeeded in computing its minimal generators, that is, the Markov basis of
A. This was accomplished using the software 4ti2 [1], and we now state the result:

Theorem 5.3. The toric ideal IA representing semi-graphoids on n = 5 has codi-
mension 54. The reduced Gröbner basis of IA in the reverse lexicographic term
order consists of 958, 202 binomials of degree up to 30. The minimal Markov basis
we found consists of 75, 889 binomials of degrees ranging from 2 to 12. They come
in 613 symmetry classes which are explained in Table 1 below. The minimal Markov
basis of IA is not unique. Moreover, the semigroup of A is not normal.

degree Markov basis elements symmetry classes
2 120 2
3 40 1
4 270 6
5 984 9
6 12,630 126
7 26,280 195
8 26,925 193
9 3,600 33

10 3,420 35
11 240 2
12 1,380 11

Table 1: Degrees of Markov basis elements of IA for n = 5; representatives of the 613
symmetry classes are available from http://www.4ti2.de/articles/data/

Proof. The Markov basis and the Gröbner basis of IA were computed with 4ti2

and the above numbers of elements correspond to the output sizes when invoking
the functions markov and groebner in 4ti2. The Markov basis of IA is not unique,
since the Markov move

[2⊥⊥3|1] + [1⊥⊥3|5] + [3⊥⊥4|12] + [3⊥⊥5|24]
−[3⊥⊥5|1] − [2⊥⊥3|5] − [1⊥⊥3|24] − [3⊥⊥4|25]

(10)

is not indispensable. Recall (e.g. from [2]) that a binomial xg+
− xg−

in the toric
ideal IA is called indispensable if

{z ∈ N80 : A · z = A · g+} = {g+,g−}.

This means that the Markov move g = g+ − g− corresponds to a 2-element fiber
given by the right-hand side A·g+ and consequently, g must belong to every Markov
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basis of IA. To see that the Markov move from (10) is not indispensable, we enu-
merate the full fiber of [2⊥⊥3|1] + [1⊥⊥3|5] + [3⊥⊥4|12] + [3⊥⊥5|24] using the moves
from the computed Markov basis. In addition to the two known elements, we obtain
exactly two more elements, namely [3⊥⊥4|1] + [1⊥⊥3|5] + [2⊥⊥3|14] + [3⊥⊥5|24] and
[3⊥⊥5|1] + [3⊥⊥4|5] + [1⊥⊥3|24] + [2⊥⊥3|45]. In fact, we obtain a different minimal
Markov basis of IA by replacing the Markov move from (10) with the move

[3⊥⊥4|1]+ [1⊥⊥3|5]+ [2⊥⊥3|14]+ [3⊥⊥5|24]− [3⊥⊥5|1]− [3⊥⊥4|5]− [1⊥⊥3|24]− [2⊥⊥3|45].

To show that the semigroup of A is not normal, consider the Markov basis move

g :=
(

α + 2 · [2⊥⊥3|45]
)

−
(

β + 2 · [4⊥⊥5|23]
)

∈ Z80, where

α = [4⊥⊥5|2] + [4⊥⊥5|3] + [1⊥⊥3|4] + [1⊥⊥2|5] + [2⊥⊥5|14] + [3⊥⊥4|15] + [1⊥⊥4|23] + [1⊥⊥5|23],

β = [1⊥⊥5|2] + [1⊥⊥4|3] + [2⊥⊥3|4] + [2⊥⊥3|5] + [3⊥⊥4|12] + [2⊥⊥5|13] + [1⊥⊥2|45] + [1⊥⊥3|45].

This lattice vector corresponds to a binomial xg+
− xg−

which is in the toric
ideal IA and has the property that both of its monomials are not square-free. We
verified that xg+

− xg−
is indispensable for IA by computing the minimal Hilbert

basis (that is, the ≤-minimal integer solutions) of the cone

{(z, u) ∈ R81 : A · z− (A · g+) · u = 0, (z, u) ≥ 0}.

This was done using the function hilbert of 4ti2 which produced precisely the
two expected elements (g+, 1) and (g−, 1) within a few seconds. Again, one could
also use g+ and the computed Markov basis to enumerate all elements in this fiber.

From our indispensable Markov move g = (α+2 · [2⊥⊥3|45])− (β +2 · [4⊥⊥5|23]),
we now construct the imset b presented in Section 4. We first check that b was not
a combinatorial imset by showing that Ax = b has no solutions with non-negative
integer coordinates. Using the functions hilbert and rays of the program 4ti2,
we computed the Hilbert basis and the extreme rays of the cone

{

(z, u) ∈ R81 : A · z = b · u and (z, u) ≥ 0
}

.

Both computations quickly finished. They show that this cone has dimension one
and is generated by the single vector (α+β, 2). Consequently, the only non-negative
real solution to A · x = b is (α + β)/2, which is not an integer solution.

For the benefit of the reader, we complete this proof by presenting a degree 12
Markov basis element, which can easily be proved to be indispensable, too:

[1⊥⊥5|2] + [2⊥⊥5|3] + 2 · [2⊥⊥3|4] + [1⊥⊥2|5] + [3⊥⊥4|5] + [3⊥⊥4|12] + [3⊥⊥4|15] +

2 · [2⊥⊥5|134] + [3⊥⊥4|5] + [3⊥⊥4|12] − [3⊥⊥4|2] − [1⊥⊥4|3] − [1⊥⊥3|4] − [2⊥⊥5|4] −

2 · [2⊥⊥3|5] − [2⊥⊥5|13] − [2⊥⊥5|14] − 2 · [3⊥⊥4|125] − [1⊥⊥5|234] − [1⊥⊥2|345].

Finally, let us remark that the computations of the 75, 889 Markov basis elements
and of the 959, 202 Gröbner basis elements were both started independently from
the given matrix using the markov and the groebner commands of 4ti2 version
1.3.1. They took about 20 and 17.75 days, respectively, on an AMD Opteron 2.4
GHz CPU running SuSE Linux 10.0. The input and output files are available from
http://www.4ti2.de/articles/data/.

15



Acknowledgments

Jason Morton and Bernd Sturmfels were supported by the DARPA Fundamental
Laws of Biology program, and Bernd Sturmfels was also supported by the NSF.
Anne Shiu was supported by a Lucent Technologies Bell Labs Graduate Research
Fellowship. Oliver Wienand was supported by the Wipprecht Foundation. We
thank an anonymous referee for helpful comments.

References

[1] 4ti2 team. 4ti2–A software package for algebraic, geometric and combinatorial
problems on linear spaces. Available at http://www.4ti2.de.

[2] S Aoki, A Takemura, and R Yoshida. Indispensable monomials of toric ideals and
Markov bases, Proceedings of the Asian Symposium on Computer Mathematics
(ASCM 2005), edited by S. Pae and H. Park, Korea Institute for Advanced Study
2005, pp. 200–202,

[3] J Bokowski and B Sturmfels. Polytopal and non-polytopal spheres—An algo-
rithmic approach. Israel Journal of Mathematics 57 (1987) 257–271.

[4] W Bruns and R Koch. Computing the integral closure of an affine semigroup.
Effective methods in algebraic and analytic geometry, 2000 (Kraków). Univ. Iagel.
Acta Math. 39 (2001) 59–70.

[5] P Diaconis and B Sturmfels. Algebraic algorithms for sampling from conditional
distributions. Annals of Statistics 26 (1998) 363-397.

[6] D Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry,
Graduate Texts in Mathematics, Springer Verlag, New York, 1995.

[7] D Geiger, C Meek and B Sturmfels. On the toric algebra of graphical models.
Annals of Statistics 34 (2006) 1463–1492.

[8] D Grayson and M Stillman. Macaulay 2, a software system for research in alge-
braic geometry. Available from http://www.math.uiuc.edu/Macaulay2/.

[9] E Gawrilow and M Joswig: Polymake: a framework for analyzing convex
polytopes, in Polytopes — Combinatorics and Computation, eds. G. Kalai and
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6 Appendix: Semi-graphoid axiom instances

Here is the list of all 120 semi-graphoid axiom instances for n = 5, grouped into
triples according to which 3-face of the 5-cube they come from. The two types of
brackets specify the non-submodular coarsest semi-graphoid Γ which was discussed
in Section 3.

[3⊥⊥5|12] + [[3⊥⊥4|125]] = [3⊥⊥4|12] + [[3⊥⊥5|124]] [2⊥⊥5|13] + [[2⊥⊥4|135]] = [2⊥⊥4|13] + [[2⊥⊥5|134]]
[4⊥⊥5|12] + [[3⊥⊥4|125]] = [3⊥⊥4|12] + [[4⊥⊥5|123]] [4⊥⊥5|13] + [[2⊥⊥4|135]] = [2⊥⊥4|13] + [[4⊥⊥5|123]]
[4⊥⊥5|12] + [[3⊥⊥5|124]] = [3⊥⊥5|12] + [[4⊥⊥5|123]] [4⊥⊥5|13] + [[2⊥⊥5|134]] = [2⊥⊥5|13] + [[4⊥⊥5|123]]

[2⊥⊥3|14] + [[2⊥⊥5|134]] = [2⊥⊥5|14] + [[2⊥⊥3|145]] [[2⊥⊥4|15]] + [[2⊥⊥3|145]] = [[2⊥⊥3|15]] + [[2⊥⊥4|135]]
[2⊥⊥5|14] + [[3⊥⊥5|124]] = [3⊥⊥5|14] + [[2⊥⊥5|134]] [[3⊥⊥4|15]] + [[2⊥⊥3|145]] = [[2⊥⊥3|15]] + [[3⊥⊥4|125]]
[3⊥⊥5|14] + [[2⊥⊥3|145]] = [2⊥⊥3|14] + [[3⊥⊥5|124]] [[3⊥⊥4|15]] + [[2⊥⊥4|135]] = [[2⊥⊥4|15]] + [[3⊥⊥4|125]]

[1⊥⊥5|23] + [[1⊥⊥4|235]] = [1⊥⊥4|23] + [[1⊥⊥5|234]] [1⊥⊥3|24] + [[3⊥⊥5|124]] = [3⊥⊥5|24] + [[1⊥⊥3|245]]
[4⊥⊥5|23] + [[1⊥⊥4|235]] = [1⊥⊥4|23] + [[4⊥⊥5|123]] [1⊥⊥5|24] + [[1⊥⊥3|245]] = [1⊥⊥3|24] + [[1⊥⊥5|234]]
[4⊥⊥5|23] + [[1⊥⊥5|234]] = [1⊥⊥5|23] + [[4⊥⊥5|123]] [1⊥⊥5|24] + [[3⊥⊥5|124]] = [3⊥⊥5|24] + [[1⊥⊥5|234]]

[1⊥⊥3|25] + [[1⊥⊥4|235]] = [1⊥⊥4|25] + [[1⊥⊥3|245]] [1⊥⊥2|34] + [[2⊥⊥5|134]] = [2⊥⊥5|34] + [[1⊥⊥2|345]]
[1⊥⊥3|25] + [[3⊥⊥4|125]] = [3⊥⊥4|25] + [[1⊥⊥3|245]] [1⊥⊥5|34] + [[1⊥⊥2|345]] = [1⊥⊥2|34] + [[1⊥⊥5|234]]
[3⊥⊥4|25] + [[1⊥⊥4|235]] = [1⊥⊥4|25] + [[3⊥⊥4|125]] [1⊥⊥5|34] + [[2⊥⊥5|134]] = [2⊥⊥5|34] + [[1⊥⊥5|234]]

[1⊥⊥2|35] + [[1⊥⊥4|235]] = [1⊥⊥4|35] + [[1⊥⊥2|345]] [1⊥⊥2|45] + [[1⊥⊥3|245]] = [1⊥⊥3|45] + [[1⊥⊥2|345]]
[1⊥⊥2|35] + [[2⊥⊥4|135]] = [2⊥⊥4|35] + [[1⊥⊥2|345]] [1⊥⊥3|45] + [[2⊥⊥3|145]] = [2⊥⊥3|45] + [[1⊥⊥3|245]]
[1⊥⊥4|35] + [[2⊥⊥4|135]] = [2⊥⊥4|35] + [[1⊥⊥4|235]] [2⊥⊥3|45] + [[1⊥⊥2|345]] = [1⊥⊥2|45] + [[2⊥⊥3|145]]

[[2⊥⊥4|1]] + [3⊥⊥4|12] = [[3⊥⊥4|1]] + [2⊥⊥4|13] [[2⊥⊥3|1]] + [3⊥⊥5|12] = [3⊥⊥5|1] + [[2⊥⊥3|15]]
[[2⊥⊥4|1]] + [2⊥⊥3|14] = [[2⊥⊥3|1]] + [2⊥⊥4|13] [[2⊥⊥3|1]] + [2⊥⊥5|13] = [2⊥⊥5|1] + [[2⊥⊥3|15]]
[[3⊥⊥4|1]] + [2⊥⊥3|14] = [[2⊥⊥3|1]] + [3⊥⊥4|12] [3⊥⊥5|1] + [2⊥⊥5|13] = [2⊥⊥5|1] + [3⊥⊥5|12]

[[2⊥⊥4|1]] + [4⊥⊥5|12] = [4⊥⊥5|1] + [[2⊥⊥4|15]] [3⊥⊥5|1] + [4⊥⊥5|13] = [4⊥⊥5|1] + [3⊥⊥5|14]
[2⊥⊥5|1] + [[2⊥⊥4|15]] = [[2⊥⊥4|1]] + [2⊥⊥5|14] [3⊥⊥5|1] + [[3⊥⊥4|15]] = [[3⊥⊥4|1]] + [3⊥⊥5|14]
[4⊥⊥5|1] + [2⊥⊥5|14] = [2⊥⊥5|1] + [4⊥⊥5|12] [4⊥⊥5|1] + [[3⊥⊥4|15]] = [[3⊥⊥4|1]] + [4⊥⊥5|13]

[[1⊥⊥3|2]] + [1⊥⊥4|23] = [[1⊥⊥4|2]] + [1⊥⊥3|24] [1⊥⊥5|2] + [1⊥⊥3|25] = [[1⊥⊥3|2]] + [1⊥⊥5|23]
[[1⊥⊥4|2]] + [3⊥⊥4|12] = [[3⊥⊥4|2]] + [1⊥⊥4|23] [[3⊥⊥5|2]] + [1⊥⊥5|23] = [1⊥⊥5|2] + [3⊥⊥5|12]
[[3⊥⊥4|2]] + [1⊥⊥3|24] = [[1⊥⊥3|2]] + [3⊥⊥4|12] [[3⊥⊥5|2]] + [1⊥⊥3|25] = [[1⊥⊥3|2]] + [3⊥⊥5|12]

[[1⊥⊥4|2]] + [4⊥⊥5|12] = [[4⊥⊥5|2]] + [1⊥⊥4|25] [[3⊥⊥5|2]] + [4⊥⊥5|23] = [[4⊥⊥5|2]] + [3⊥⊥5|24]
[[1⊥⊥4|2]] + [1⊥⊥5|24] = [1⊥⊥5|2] + [1⊥⊥4|25] [[3⊥⊥5|2]] + [3⊥⊥4|25] = [[3⊥⊥4|2]] + [3⊥⊥5|24]
[1⊥⊥5|2] + [4⊥⊥5|12] = [[4⊥⊥5|2]] + [1⊥⊥5|24] [[4⊥⊥5|2]] + [3⊥⊥4|25] = [[3⊥⊥4|2]] + [4⊥⊥5|23]

[[1⊥⊥4|3]] + [2⊥⊥4|13] = [[2⊥⊥4|3]] + [1⊥⊥4|23] [[1⊥⊥2|3]] + [2⊥⊥5|13] = [[2⊥⊥5|3]] + [1⊥⊥2|35]
[[1⊥⊥4|3]] + [1⊥⊥2|34] = [[1⊥⊥2|3]] + [1⊥⊥4|23] [1⊥⊥5|3] + [1⊥⊥2|35] = [[1⊥⊥2|3]] + [1⊥⊥5|23]
[[2⊥⊥4|3]] + [1⊥⊥2|34] = [[1⊥⊥2|3]] + [2⊥⊥4|13] [[2⊥⊥5|3]] + [1⊥⊥5|23] = [1⊥⊥5|3] + [2⊥⊥5|13]

[[1⊥⊥4|3]] + [4⊥⊥5|13] = [[4⊥⊥5|3]] + [1⊥⊥4|35] [[2⊥⊥4|3]] + [4⊥⊥5|23] = [[4⊥⊥5|3]] + [2⊥⊥4|35]
[[1⊥⊥4|3]] + [1⊥⊥5|34] = [1⊥⊥5|3] + [1⊥⊥4|35] [[2⊥⊥5|3]] + [2⊥⊥4|35] = [[2⊥⊥4|3]] + [2⊥⊥5|34]
[[4⊥⊥5|3]] + [1⊥⊥5|34] = [1⊥⊥5|3] + [4⊥⊥5|13] [[4⊥⊥5|3]] + [2⊥⊥5|34] = [[2⊥⊥5|3]] + [4⊥⊥5|23]

[[1⊥⊥2|4]] + [2⊥⊥3|14] = [[2⊥⊥3|4]] + [1⊥⊥2|34] [[1⊥⊥2|4]] + [2⊥⊥5|14] = [[2⊥⊥5|4]] + [1⊥⊥2|45]
[[1⊥⊥2|4]] + [1⊥⊥3|24] = [[1⊥⊥3|4]] + [1⊥⊥2|34] [[1⊥⊥2|4]] + [1⊥⊥5|24] = [1⊥⊥5|4] + [1⊥⊥2|45]
[[1⊥⊥3|4]] + [2⊥⊥3|14] = [[2⊥⊥3|4]] + [1⊥⊥3|24] [1⊥⊥5|4] + [2⊥⊥5|14] = [[2⊥⊥5|4]] + [1⊥⊥5|24]

[[1⊥⊥3|4]] + [1⊥⊥5|34] = [1⊥⊥5|4] + [1⊥⊥3|45] [[2⊥⊥3|4]] + [3⊥⊥5|24] = [[3⊥⊥5|4]] + [2⊥⊥3|45]
[[3⊥⊥5|4]] + [1⊥⊥5|34] = [1⊥⊥5|4] + [3⊥⊥5|14] [[2⊥⊥3|4]] + [2⊥⊥5|34] = [[2⊥⊥5|4]] + [2⊥⊥3|45]
[[3⊥⊥5|4]] + [1⊥⊥3|45] = [[1⊥⊥3|4]] + [3⊥⊥5|14] [[2⊥⊥5|4]] + [3⊥⊥5|24] = [[3⊥⊥5|4]] + [2⊥⊥5|34]

[1⊥⊥2|5] + [[2⊥⊥3|15]] = [[2⊥⊥3|5]] + [1⊥⊥2|35] [1⊥⊥2|5] + [[2⊥⊥4|15]] = [[2⊥⊥4|5]] + [1⊥⊥2|45]
[1⊥⊥2|5] + [1⊥⊥3|25] = [1⊥⊥3|5] + [1⊥⊥2|35] [1⊥⊥2|5] + [1⊥⊥4|25] = [1⊥⊥4|5] + [1⊥⊥2|45]
[1⊥⊥3|5] + [[2⊥⊥3|15]] = [[2⊥⊥3|5]] + [1⊥⊥3|25] [1⊥⊥4|5] + [[2⊥⊥4|15]] = [[2⊥⊥4|5]] + [1⊥⊥4|25]

[1⊥⊥3|5] + [[3⊥⊥4|15]] = [[3⊥⊥4|5]] + [1⊥⊥3|45] [[2⊥⊥3|5]] + [2⊥⊥4|35] = [[2⊥⊥4|5]] + [2⊥⊥3|45]
[1⊥⊥3|5] + [1⊥⊥4|35] = [1⊥⊥4|5] + [1⊥⊥3|45] [[2⊥⊥4|5]] + [3⊥⊥4|25] = [[3⊥⊥4|5]] + [2⊥⊥4|35]
[[3⊥⊥4|5]] + [1⊥⊥4|35] = [1⊥⊥4|5] + [[3⊥⊥4|15]] [[3⊥⊥4|5]] + [2⊥⊥3|45] = [[2⊥⊥3|5]] + [3⊥⊥4|25]

[[1⊥⊥2|]] + [[2⊥⊥3|1]] = [[2⊥⊥3|]] + [[1⊥⊥2|3]] [[1⊥⊥2|]] + [[2⊥⊥4|1]] = [[2⊥⊥4|]] + [[1⊥⊥2|4]]
[[1⊥⊥3|]] + [[1⊥⊥2|3]] = [[1⊥⊥2|]] + [[1⊥⊥3|2]] [[1⊥⊥2|]] + [[1⊥⊥4|2]] = [[1⊥⊥4|]] + [[1⊥⊥2|4]]
[[2⊥⊥3|]] + [[1⊥⊥3|2]] = [[1⊥⊥3|]] + [[2⊥⊥3|1]] [[1⊥⊥4|]] + [[2⊥⊥4|1]] = [[2⊥⊥4|]] + [[1⊥⊥4|2]]

[[1⊥⊥2|]] + [2⊥⊥5|1] = [[2⊥⊥5|]] + [1⊥⊥2|5] [[1⊥⊥4|]] + [[1⊥⊥3|4]] = [[1⊥⊥3|]] + [[1⊥⊥4|3]]
[[1⊥⊥2|]] + [1⊥⊥5|2] = [[1⊥⊥5|]] + [1⊥⊥2|5] [[3⊥⊥4|]] + [[1⊥⊥4|3]] = [[1⊥⊥4|]] + [[3⊥⊥4|1]]
[[1⊥⊥5|]] + [2⊥⊥5|1] = [[2⊥⊥5|]] + [1⊥⊥5|2] [[3⊥⊥4|]] + [[1⊥⊥3|4]] = [[1⊥⊥3|]] + [[3⊥⊥4|1]]

[[1⊥⊥3|]] + [3⊥⊥5|1] = [[3⊥⊥5|]] + [1⊥⊥3|5] [[1⊥⊥4|]] + [1⊥⊥5|4] = [[1⊥⊥5|]] + [1⊥⊥4|5]
[[1⊥⊥5|]] + [3⊥⊥5|1] = [[3⊥⊥5|]] + [1⊥⊥5|3] [[4⊥⊥5|]] + [1⊥⊥5|4] = [[1⊥⊥5|]] + [4⊥⊥5|1]
[[1⊥⊥5|]] + [1⊥⊥3|5] = [[1⊥⊥3|]] + [1⊥⊥5|3] [[4⊥⊥5|]] + [1⊥⊥4|5] = [[1⊥⊥4|]] + [4⊥⊥5|1]

[[2⊥⊥4|]] + [[2⊥⊥3|4]] = [[2⊥⊥3|]] + [[2⊥⊥4|3]] [[2⊥⊥3|]] + [[2⊥⊥5|3]] = [[2⊥⊥5|]] + [[2⊥⊥3|5]]
[[3⊥⊥4|]] + [[2⊥⊥4|3]] = [[2⊥⊥4|]] + [[3⊥⊥4|2]] [[2⊥⊥5|]] + [[3⊥⊥5|2]] = [[3⊥⊥5|]] + [[2⊥⊥5|3]]
[[3⊥⊥4|]] + [[2⊥⊥3|4]] = [[2⊥⊥3|]] + [[3⊥⊥4|2]] [[3⊥⊥5|]] + [[2⊥⊥3|5]] = [[2⊥⊥3|]] + [[3⊥⊥5|2]]

[[2⊥⊥4|]] + [[4⊥⊥5|2]] = [[4⊥⊥5|]] + [[2⊥⊥4|5]] [[3⊥⊥4|]] + [[4⊥⊥5|3]] = [[4⊥⊥5|]] + [[3⊥⊥4|5]]
[[2⊥⊥5|]] + [[4⊥⊥5|2]] = [[4⊥⊥5|]] + [[2⊥⊥5|4]] [[3⊥⊥4|]] + [[3⊥⊥5|4]] = [[3⊥⊥5|]] + [[3⊥⊥4|5]]
[[2⊥⊥5|]] + [[2⊥⊥4|5]] = [[2⊥⊥4|]] + [[2⊥⊥5|4]] [[3⊥⊥5|]] + [[4⊥⊥5|3]] = [[4⊥⊥5|]] + [[3⊥⊥5|4]]
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