General Statement. You should have a good working knowledge of the following topics from Math 151, 152: limits, differentiation rules, derivative as a rate of change, basic curve sketching with calculus, integration rules, the integral as a sum, vectors in 2 and 3 dimensions, lines and planes in 3-space, functions of several variables and their graphs, partial derivatives and gradients, and the tangent plane to a graph of a function of two variables. The following review exercises should help you review some of these important concepts from Math 152.

Integrals.

1. Do the following integrals

\[\int \frac{x \, dx}{\sqrt{1 + x^2}} \quad \int xe^{2x} \, dx \quad \int_{3}^{5} \frac{dx}{x^2 - 4} \]

2. Determine whether or not the following integrals converge or diverge

\[\int_{0}^{\infty} \frac{dx}{\sqrt{x^3 + x}} \quad \int_{0}^{1} \frac{dx}{x \sqrt{x}} \]

3. Set up the integral that computes the area between the line \(y = x - 1 \) and the parabola \(y^2 = 2x + 6 \).

4. Set up the integral that computes the volume of the solid with a base given by the unit circle and with cross sections perpendicular to the base given by equilateral triangles.

5. A heavy rope, 50 feet long, weighs \(0.5 \text{ lb/ft} \) and hangs over the edge of building 120 feet high. How much work is done in pulling the rope to the top of the building?

Vectors, lines and planes in 3-space

6. Find the angle between the vectors \(\langle 1, 2, 2 \rangle \) and \(\langle 3, 4, 0 \rangle \).

7. Find the equation of the line that is perpendicular to the plane \(2x + y - 3z = 5 \) and passing through the point \((4, -1, 2) \). Express the answer in both parametric and symmetric form.

8. Find the equation of the plane that passes through the points \((1, 0, -3), (0, -2, -4) \) and \((4, 1, 6) \).

9. Find the equation of the tangent line to the curve \(x = t, y = t^2, z = t^3 \) at the point \((1, 1, 1) \). Express the answer in both parametric and symmetric form.

10. Find the distance from the point \((2, 8, 5) \) to the plane \(x - 2y - 2z = 1 \).

Functions of several variables and their graphs
11. Graph the following surfaces

\[z = x^2 - 2y^2 \quad z^2 + 2x^2 + 4y^2 = 16 \quad z^2 - x^2 + y^2 = 4 \]

12. Describe the level curves of the following functions of two variables. (Recall that a level curve of a function \(f(x, y) \) is a set in the plane of the form \(\{(x, y); f(x, y) = k\} \) where \(k \) is a constant).

\[f(x, y) = x^2 - y^2 \quad f(x, y) = \frac{x^2 + y^2}{x} \]

13. Describe the level surfaces of the following functions of three variables (Recall that a level surface of a function \(f(x, y, z) \) is a set in the 3-space of the form \(\{(x, y, z); f(x, y, z) = k\} \) where \(k \) is a constant).

\[f(x, y, z) = x^2 - y^2 - z^2 \quad f(x, y, z) = 3x - 2y + 4z \]

Partial Derivatives, gradients and tangent planes

14. Find the partial derivatives of the following functions with respect to \(x \) and \(y \)

\[f(x, y) = x \cos(x^2 y) \quad f(x, y) = e^{xy} \sqrt{x^2 + y^2} \]

15. Find a unit vector that points in the direction of maximum increase of the given function at the given point (recall that the gradient points in the direction of maximum increase).

\[f(x, y) = x^2 y^3 \text{ at } (1, 2) \quad f(x, y, z) = x^2 + y^3 + z^4 \text{ at } (-1, 3, 2) \]

16. Find the equation of the tangent plane to the given surface at the given point.

\[z = -x^2 y^3 \text{ at } (1, 1, -1) \quad x^2 + 2y^2 - z^2 = 8 \text{ at } (1, 2, 1) \]

17. Indicate the possible directions of the gradient vectors at various points on the following grid that represents the level sets (or contour map) of a function of two variables. What missing information regarding the grid would be helpful in order to more accurately determine the gradient vectors?