Week-In-Review #7

1. Find the first three derivatives of the following functions:
 (a) \(f(x) = (5x + 2)^2 \)
 (b) \(g(x) = \sqrt[5]{x^3} \)
 (c) \(h(x) = 4x(2x + 6)^3 \)
For each graph given in questions #2-#5, determine the intervals where

(a) \(f'(x) > 0 \)
(b) \(f'(x) < 0 \)
(c) \(f''(x) > 0 \)
(d) \(f''(x) < 0 \)

and list any \(x \)-values where \(f'(x) = 0 \) or where \(f'(x) \) is undefined.
6. Given \(f'(x) = n(x+2)(x-3)^4(x+5)^3 \), where \(n \) is a function that is always negative, determine critical values of \(f(x) \), intervals where \(f(x) \) is increasing or decreasing and any values of \(x \) where local extrema of \(f(x) \) will occur.

7. Determine the concavity and any inflection points of \(f(x) = 4x - x^4 \), using the second derivative.
For each function in questions #8-#10, find the following information and use it to sketch each function.

(a) Domain of $f(x)$

(b) Intercepts

(c) Asymptotes/Holes

(d) All critical values

(e) All intervals where $f(x)$ is increasing/decreasing

(f) Any local extrema

(g) All intervals where $f(x)$ is concave up/concave down

(h) Any inflection points

8. $f(x) = x^4 - 6x^2 + 5$
9. \(f(x) = \frac{1}{x^2 - 16} \)
10. \(f(x) = \sqrt[3]{2x + 5} \)
11. Sketch the graph of a function that satisfies the following conditions:

- Vertical Asymptotes at \(x = -3, 0, 2 \)
- Horizontal Asymptote at \(y = 0 \)
- \(f'(-2) = 0 \) \(f(-2) = 1 \)
- Inflection point: (1,0)
- \(f'(x) < 0 \) on \((-\infty, -3), (-3, -2) \) and \((2, \infty) \)
- \(f'(x) > 0 \) on \((-2, 0) \) and \((0, 2) \)
- \(f''(x) < 0 \) on \((-\infty, -3) \) and \((0, 1) \)
- \(f''(x) > 0 \) on \((-3, 0), (1, 2) \) and \((2, \infty) \)

12. Sketch the graph of a function that satisfies the following conditions:

- Continuous for all reals
- Domain: All reals
- Range: All reals greater than or equal to 4
- \(f'(x) > 0 \) on \((-5, 0) \) and \((5, \infty) \)
- \(f'(x) < 0 \) on \((-\infty, -5) \) and \((0, 5) \)
- \(f'(0) \) undefined
- \(f''(x) > 0 \) on \((-\infty, 0) \) and \((0, \infty) \)
13. Using the given graph of $f''(x)$, sketch possible graphs of $f'(x)$ and $f(x)$.