4.1 - First Derivatives and Graphs

Increasing and Decreasing Functions: On an open interval (a, b) on which $f(x)$ is differentiable and continuous

(a) $f(x)$ is increasing on (a, b) if $f'(x) > 0$ on (a, b).

(b) $f(x)$ is decreasing on (a, b) if $f'(x) < 0$ on (a, b).

(c) $f(x)$ is constant on (a, b) if $f'(x) = 0$ on (a, b).

Ex: Using the graph of $f(x)$ below, answer the following questions.

(a) On what intervals is $f'(x) > 0$ and what does this say about $f(x)$?

(b) On what intervals is $f'(x) < 0$ and what does this say about $f(x)$?

(c) On what intervals is $f'(x) = 0$ and what does this say about $f(x)$?
Def: A critical value for \(f(x) \) is an \(x \)-value in the domain of \(f(x) \) for which

1. \(f'(x) = 0 \) or
2. \(f'(x) \) is undefined (DNE)

(NOTE: Critical values will be partition numbers of our sign chart for the first derivative. Also, any \(x \)-value not in the domain of the function will also be a partition number of our sign chart for the first derivative.)

Ex: Find the critical values and partition numbers for the following functions and then construct a sign chart for the first derivative to determine where the function is increasing/decreasing.

(a) \(f(x) = x^3 + 3x^2 - 9x + 3 \)

(b) \(g(x) = \sqrt[3]{x} \)

(c) \(h(x) = \frac{1}{x} \)

First Derivative Test

Suppose \(x = c \) is a critical value of \(f(x) \).

1. If \(f'(x) \) changes from (+) to (-) at \(x = c \), then we have that \(f(x) \) is \(\nearrow \searrow \) and at \(x = c \) there is a local maximum.
2. If \(f'(x) \) changes from (-) to (+) at \(x = c \), then we have that \(f(x) \) is \(\searrow \nearrow \) and at \(x = c \) there is a local minimum.
3. If the sign of \(f'(x) \) is the same on both sides of \(x = c \), then at \(x = c \) there is neither a local maximum nor a local minimum.

(NOTE: Local extrema means all local maxima and local minima. All local extrema will occur at critical values, but not all critical values will produce local extrema.)
Ex: Determine the intervals where the following functions are increasing and decreasing and locate any points where local extrema occur.

(a) \(f(x) = x^3 + 3x^2 - 9x + 3 \)

(b) \(f(x) = \frac{x^2}{x - 1} \)

Ex: Given \(f'(x) = p(x + 2)^2(x - 5)^3(x - 10) \) where \(p \) is a function that is always positive, find all critical values of \(f(x) \), all intervals where \(f(x) \) is increasing and decreasing, and all places where local extrema occur.
Ex: (#50) If it is known that \(f(x) \) is a continuous function over \((-\infty, \infty) \) and you are given the information below, sketch a graph of \(f(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>-3</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Ex: Use the given graph to answer the following questions:

(a) If the graph is that of \(f(x) \), where is \(f'(x) > 0? \) \(f'(x) < 0? \) \(f'(x) = 0? \)

(b) If the graph is that of \(f'(x) \), where is \(f(x) \) increasing? Decreasing?

(c) If the graph is that of \(f'(x) \), where does \(f(x) \) have local extrema?