33. ∀ τ ∈ S_n. and π is odd. Then π = o ◦ (ω^−1 π)
 where ω o^−1 is odd, π is odd =⇒ o^−1 π is even ∈ A

35. If o is a cycle of length n, then o^r is also a cycle if and only if gcd(r, n) = 1, or n | r.
 Let G be the gp generated by o. Then G = <o> ≅ Z_n.
 If o^r is a cycle,
 Case 1. o^r = e =⇒ n | r.
 Case 2. o^r ≠ e. Then clearly o^r has no fixed pts.
 Then o^r is a cycle =⇒ o^r is a cycle of length n
 =⇒ |<o^r>| = n. i.e. o^r is a generator of G

By Thm 6.14, it is only possible when gcd(r, n) = 1.
(Case 1 is needed since in our book, e is by definition a cycle.)

§10.

19. False: d. f. i.

∀ b ∈ G. H < G.

20. Not possible. For abelian G, bH = \{bh | h ∈ H\} = \{hb | h ∈ H\} = Hb

21. Take subgroup H = G

22. Take subgroup H = Z_3.

28. ∀ g, ∀ h ∈ H. g^−1 h g ∈ H =⇒ Let \(\tilde{h} = g^−1 h g \)
 =⇒ g^\tilde{h} = h g ⇒ h g ∈ gH.
Hence Hg ∈ gH. (Cont'd in the next pg)

But both Hg and gH have one correspondence with H.
Conversely, take \(g_1 = g^{-1} \). \(g_1, h, g \in H \Rightarrow g h g^{-1} \in H \)
\(\Rightarrow g h g^{-1} = h_2 \Rightarrow g h = h_2 g \Rightarrow g h \in H g \Rightarrow g H \subseteq H g \)
Combining above, \(g H = H g \) \(\forall g \).

29. \(\forall g, H g \) is the only left coset of \(H \) that contains \(g \).
\(H g \) is the only right coset of \(H \) that contains \(g \).
If left cosets give the same partition as right cosets.
Then \(g H = H g \Rightarrow \exists h \in H \) s.t.
\(h g = g h \)
\(\Rightarrow g^{-1} h g = h \in H \).

34. \(\forall H \leq G, H \neq G \). Then \(|H| < p^2 \), and \(|H| = 1 \) \(\Rightarrow \)
\(|H| = 1 \text{ or } p \text{ or } q \)
If \(|H| = 1 \Rightarrow H = \{e\} \), a cyclic.
If \(|H| = p \text{ or } q \), by Corollary 10.11, \(H \) is cyclic.

38. Pf. Let \(\{a_i H \ | \ i = 1, \ldots, r\} \) be the collection of distinct left cosets of \(H \) in \(G \).
\(\{b_j k \ | \ j = 1, \ldots, s\} \) be the collection of distinct left cosets of \(k \) in \(H \).
Consider \(\{a_i b_j k \ | \ i = 1, \ldots, r, j = 1, \ldots, s\} \).
These are \(rs \) many left cosets of \(k \) in \(G \).
Just need to prove that they are pairwise disjoint, and cover \(G \).
\(i) \) If \(a_i b_j k = a_i b_j k \Rightarrow a_i a_i b_j k = b_j k \)
But \(b_j k \in H \), \(b_j k \in H \Rightarrow a_i a_i b_j k \in H \)
\(\Rightarrow a_i \in a_i b_j k \Rightarrow a_i = a_i b_j k \)
Hence \(b_j k = b_j k \), but this gives \(b_j = b_j k \).
Hence for \(a_i \neq a_i k \text{ or } b_j \neq b_j k \), \(a_i b_j k \) and \(a_i b_j k \)
are different cosets of \(k \) \(\Rightarrow \) They are disjoint.
\(i b) \forall g \in G \exists a_i \text{ s.t. } g a_i H \). \(i.e. \ a_i g = h \in H \).
Then \(\exists b_j \text{ s.t. } h \in b_j k \Rightarrow a_i g \in b_j k \Rightarrow g \in a_i b_j k \).
39. Let $H_i = G \setminus H$. Then both the left coset partition and the right cosets partition are $\{H, H_i\}$.

40. For $g \in G$. If $|\langle g \rangle| = m$, by Lagrange Thm. $m | n$.

Furthermore, $|\langle g \rangle| = m \Rightarrow g^m = e \Rightarrow g^n = e$ as well.