0.1 Math 640 — Homework 9.

1. The function \(f(i, j) = \sqrt{\frac{2}{n}} \cos((2j-1)(i-1)\frac{\pi}{2n}) \) generates an \(n \times n \) matrix \(A_n \) with orthogonal rows with \(a_{ij} = f(i, j) \). Find a multiplier diagonal \(D \) matrix that converts this matrix to an orthogonal matrix. (Hint. Think discrete cosine transform. You might also consider some numerical work to experimentally determine \(D \).)

2. Find \(A_4 \).

3. Prove or disprove: The product of Hermitian matrices is Hermitian.

4. Let \(z_1, \ldots, z_n \) be a orthonormal set of vectors in \(\mathbb{C}_n \).

 (a) Prove that if \(\alpha_1, \ldots, \alpha_n \) are real, then \(H = \sum \alpha_j z_j z_j^* \) is Hermitian.

 (b) Find the spectrum of \(H \).

 (c) Prove that \(H \) is positive definite if and only if the \(\alpha_1, \ldots, \alpha_n \) are real and positive.