1. Consider the arithmetic progression 0, b, 2b, 3b, Suppose \((d, b) = 1\).\(^2\) Prove that the series \(\{kb \pmod{d}\}, k = 1, 2, . . . ,\) contains \(d\) different residues. (Hint. Prove that the series \(\{kb \pmod{d}\}, k = 1, 2, . . . , d\) contains \(d\) different residues.

2. For any integers \(a, b, \) and \(m\) show that \(ab \pmod{m} = [(a \pmod{m})b \pmod{m}] \pmod{m}\).

3. Given an argument that when constrained to a fixed mantissa arithmetic, that every mathematical formula proposed to generate random numbers must cycle.

4. The floor function takes any non-integer number to the next smaller integer, while leaving integers unchanged. For example, \(\lfloor 3 \rfloor = 3, \lfloor -3.19 \rfloor = -4, \lfloor 7.939 \rfloor = 7\). Using the floor function, give a formula for the middle-square algorithm.

5. How can you utilize random numbers in the classroom to illustrate some mathematical concept?

7. Let \(s = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{12} + \frac{1}{15} + \frac{1}{16} + \cdots\) be the sum of the reciprocals of all numbers with primes factors 2, 3, and 5. Prove Euler’s formula in the special case, that \(\prod_{p=2,3,5} \frac{1}{1-p}
\)

8. Compute \(\varphi(25), \varphi(32),\) and \(\varphi(100)\).

9. Show that \(\varphi(2n) = \varphi(n)\), for every odd integer \(n\).

10. Prove that if the integer \(n\) has \(r\) distinct primes, the \(2^2 | \varphi(n)\).

\(^1\)©2000, G. Donald Allen
\(^2\)This means \(d\) and \(b\) are relatively prime.
11. Prove that the Euler \(\varphi \)-function is multiplicative. That is, \(\varphi(mn) = \varphi(m) \varphi(n) \). (This may prove difficult.)

12. Show that there is no odd perfect number that is the product of just two odd primes (¿1).

13. Prove the formula \(\ln (1 - x^2) = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots\right) \)

14. Express \(\sqrt{i} \) in the form \(a + ib \).

15. Classify which numbers of the form \(\sqrt{p^q} \) are transcendental.

16. Use the classical result \(e^{i\pi} = -1 \) and Gelfond’s theorem to establish that \(e \) cannot be algebraic.

17. Note two example of aspects of number theory that required further algebraic development ot solve.

18. Explain the development of algebra as a consequence of symbolism. (Hint. What aspects of 19th century developments would have been impossible without symbolism?)

19. Write a short essay on the impact of number theory on the development of algebra.