Solutions to Homework IV: 8.4, 8.8, 8.9

1. (8.4 #25) Evaluate \(\int_{0}^{1} \frac{2x + 3}{(x + 1)^2} \, dx \)

Use partial fraction decomposition:
\[
\frac{2x + 3}{(x + 1)^2} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2}
\]
2x + 3 = A(x + 1) + B

If \(x = -1 \):
1 = B

If \(x = 0 \) (or matching powers), 3 = A + B, or A = 2.

\[
\int_{0}^{1} \frac{2x + 3}{(x + 1)^2} \, dx = \int_{0}^{1} \left(\frac{2}{x + 1} + \frac{1}{(x + 1)^2} \right) \, dx
\]

= \(2 \ln |x + 1| - \frac{1}{x + 1} \bigg|_{0}^{1} \)

= \(2 \ln 2 - \frac{1}{2} - 2 \ln 1 + 1 = 2 \ln 2 + \frac{1}{2} \)

2. Find all values of \(p \) for which \(\int_{0}^{1} \frac{1}{x^p} \, dx \) converge

\[
\int_{0}^{1} \frac{1}{x^p} \, dx = \lim_{t \to 0^+} \int_{t}^{1} x^{-p} \, dx
\]

If \(p \neq 1 \),

= \(\lim_{t \to 0^+} \frac{1}{-p+1} x^{-p+1} \bigg|_{t}^{1} \)

= \(\lim_{t \to 0^+} \frac{1}{-p+1} - \frac{1}{-p+1} t^{-p+1} \)

The limit will exist if and only if the “t” term “stays in the numerator”, i.e., when \(-p + 1 > 0 \), or \(p < 1 \). Therefore, the integral converges when \(p < 1 \) and diverges when \(p > 1 \).

When \(p = 1 \), we have

\[
\int_{0}^{1} \frac{1}{x^p} \, dx = \lim_{t \to 0^+} \int_{t}^{1} \frac{1}{x} \, dx
\]

= \(\lim_{t \to 0^+} \ln x \bigg|_{t}^{1} \)

= \(\lim_{t \to 0^+} \ln 1 - \ln t \)

As \(t \) approaches 0, \(\ln t \) approaches \(-\infty\), so the integral diverges.

Therefore, the integral converges if and only if \(p < 1 \).
3. (8.9 #67c) The Laplace transform of a continuous function \(f \) is defined by

\[
F(s) = \int_0^\infty f(t)e^{-st} \, dt
\]

Find the Laplace transform of \(f(t) = t \).

Replacing \(f(t) \) in the definition, we have

\[
F(s) = \int_0^\infty te^{-st} \, dt
\]

Use integration by parts with \(u = t, \ dv = e^{-st} \). Then \(du = dt, \ v = -\frac{1}{s}e^{-st} \). The integral of \(vu \) becomes

\[
-\frac{1}{s} \int e^{-st} \, dt = \frac{1}{s^2}e^{-st}, \text{ so our original integral becomes}
\]

\[
= \lim_{b \to \infty} \left. \frac{-1}{s} e^{-st} \right|_0^b
= \lim_{b \to \infty} \left(-\frac{1}{s} e^{-sb} + \frac{1}{s^2} e^{0b} \right)
\]

As \(b \) approaches \(\infty \), the second term approaches 0, but the first term is not clear (indeterminate: \(\infty \cdot 0 \)), so we use L'Hospital's Rule:

\[
\lim_{b \to \infty} -\frac{1}{s} be^{-sb} = \lim_{b \to \infty} -\frac{1}{s^2} e^{sb} = 0.
\]

Therefore, the integral converges to \(F(s) = \frac{1}{s^2} \).

4. The integral \(\int_0^1 \frac{4}{1 + x^2} \, dx \) is approximated using the midpoint rule with \(n \) rectangles. Determine the largest possible error as a function of \(n \). Explain clearly how you obtained an upper bound on \(|f''(c)| \).

\[
E_M = \frac{f''(c)(b - a)^3}{24n^2}. \text{ Here } a = 0 \text{ and } b = 1, \text{ and we need a bound on } f''(c).
\]

\[
f(x) = \frac{4}{1 + x^2} = 4(1 + x^2)^{-1}
\]

\[
f'(x) = -8(1 + x^2)^{-2}(2x) = -8x(1 + x^2)^{-2}
\]

Using the product rule, \(f''(x) = -8(1 + x^2)^{-2} - 8x(-2)(1 + x^2)^{-3}(2x) \)

\[
f''(x) = \frac{-8}{(1 + x^2)^2} + \frac{32x^2}{(1 + x^2)^3}. \text{ Since we do not know how the function behaves on } [0, 1],
\]

we simplify into a single fraction with a common denominator:

\[
f''(x) = \frac{-8(1 + x^2) + 32x^2}{(1 + x^2)^3} = \frac{24x^2 - 8}{(1 + x^2)^3}.
\]

Since the denominator is smallest when \(x = 0 \), we know

\[
f''(x) \leq \frac{24x^2 - 8}{(1 + 0^2)^3} = 24x^2 - 8
\]

which is maximized when \(x = 1 \), so \(f''(x) \leq 16 \).

Therefore, since \(f''(c) \leq 16 \) on \([0, 1]\), \(E_M \leq \frac{16(1 - 0)^3}{24n^2} = \frac{2}{3n^2} \).
5. (8.8 #39) Show that \(\frac{1}{2}(T_n + M_n) = T_{2n} \)

Let \(P \) be a partition \(\{x_0, x_1, x_2, \ldots, x_{2n}\} \). To work on the left-hand side with only \(n \) subintervals, we only use the even-indexed numbers \(x_0, x_2, x_4, \) etc.

Then \(T_n = \frac{\Delta x}{2} (f(x_0) + 2f(x_2) + 2f(x_4) + \cdots + 2f(x_{2n-2}) + f(x_{2n})) \)

Since the midpoint of \([x_0, x_2]\) is \(x_1 \) and so on, we have
\[
M_n = \Delta x (f(x_1) + f(x_3) + f(x_5) + \cdots + f(x_{2n-1}))
\]

To combine \(T_n \) and \(M_n \), note that
\[
M_n = \Delta x \left(2f(x_1) + 2f(x_3) + 2f(x_5) + \cdots + 2f(x_{2n-1}) \right),
\]

so
\[
T_n + M_n = \Delta x (f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + \cdots + 2f(x_{2n-2}) + 2f(x_{2n-1}) + f(x_{2n})).
\]

With \(n \) subintervals, \(\Delta x = \frac{b - a}{n} \), so
\[
T_n + M_n = \frac{(b - a)}{2n} (f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + \cdots + 2f(x_{2n-2}) + 2f(x_{2n-1}) + f(x_{2n}))
\]

However, with \(2n \) subintervals on the right hand side, \(\Delta x = \frac{b - a}{2n} \). Multiplying by \(\frac{1}{2} \) gives us \(b - a = \frac{\Delta x}{2} \) for the right. Therefore,
\[
\frac{1}{2}(T_n + M_n) = \frac{(b - a)}{4n} (f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + \cdots + 2f(x_{2n-2}) + 2f(x_{2n-1}) + f(x_{2n}))
\]
which is \(T_{2n} \).