Math 142 Lecture Notes
Section 1.4 – Quadratic Functions

Quadratic Functions:

Definitions:
1) a second-degree function

2) \(y = x^2 \) symmetry about the y-axis

3) lowest point on the graph is at the origin: \((0,0)\)

Parabolas: Use the rules we introduced for transformations of a basic curve and describe each of the following functions.

1. \(f(x) = 2(x - 1)^2 \)

2. \(g(x) = -3(x + 5)^2 \)

3. \(h(x) = \frac{1}{2}(x - 4)^2 \)

4. \(F(x) = -6(x - 3)^2 + 2 \)

5. \(G(x) = \frac{1}{a}(x + b)^2 - c \), where \(a, b, c \in I^+ \)
Quadratic Functions

If \(a, b, \) and \(c \) are real numbers with \(a \neq 0 \), then the function
\[
f(x) = ax^2 + bx + c
\]
is a **quadratic function** and its graph is a **parabola**.

1) domain: __________________

2) range: ___________________

Intercepts of a parabola:

\[y = ax^2 + bx + c \]

1) x-intercept:

2) y-intercept:

Quadratic formula

If \(ax^2 + bx + c = 0, a \neq 0 \), then
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

if \(b^2 - 4ac \geq 0 \).

Example:

\[f(x) = 3x^2 + 30x + 75 \]

1) Graph

2) Find the x- and y-intercepts.

3) Solve \(3x^2 + 30x + 75 \geq 0 \) graphically.

Standard form:

\[y = ax^2 + bx + c \quad , \quad a \neq 0 \]

Vertex form:

\[y = a(x - h)^2 + k \quad \text{where} \quad (h, k) \quad \text{is the vertex}. \]

Where is the vertex?
Where is the axis of symmetry?
What is the maximum value?
Complete the square and transform the following function into vertex form:

\[y = 5x^2 - 40x + 87 \]

Describe the graph of the function \(y = 5x^2 - 40x + 87 \).

Note: For parabolas that open up/down, with the vertex at \((h,k)\), the axis of symmetry is the line \(x = h\). For parabolas that open right/left, with the vertex at \((h,k)\), the axis of symmetry is the line \(y = k\).

Find the axis of symmetry for the following graph:

What is the domain?__________ What is the range?__________

Find the equation of the parabola shown above.

Vertex: The maximum or minimum point on a parabola that opens up or down. \(\text{Vertex} = (h, k) \)
Example: \[f(x) = 0.5x^2 - 4x + 12 \]

Find the vertex form for \(f(x) \).

Find the vertex and the maximum or minimum.

Find the range.

Describe the graph.

Applications

A survey of shops at the mall, shows the following data:

- The price demand function for making \(x \) items is \(96 - 3x \).
- The cost to make \(x \) items is \(165 + 48x \).

Find the break-even point(s) given that \(x \) represents hundreds of circuits, and cost is measured in thousands of dollars.

What is the wholesale price per circuit (rounded to the nearest dollar) that produces the maximum revenue?