1. a) What is the independent variable?
b) What is the domain?
c) What is the range?
d) What is \(f(3) \)?
 ans: \(r, (-3, 4), [-1, 5], 1 \)

2. Find the domain of \(f(x) = \frac{\sqrt{9 - 3x}}{x^2 - 5} \) and write your answer in inequality notation.
 ans: \(\mathbb{R}, x \leq 3, x \neq \pm \sqrt{5} \)

3. Find the domain of \(g(x) = \frac{2x^2 + x - 3}{3x^2 - x - 2} \) and write your answer in interval form.
 ans: Domain: \(\mathbb{R}, (-\infty, -\frac{2}{3}) \cup (-\frac{2}{3}, 1) \cup (1, \infty) \)

4. Find the average rate of change between the points \((8, -2)\) and \((-5, 4)\).
 ans: \(\frac{-6}{13} \)

5. Determine the x- and y-intercepts for the graph of \(f(x) = \frac{75 - 10x}{5 - x} \).
 ans: \((0, 15), (7.5, 0)\)

6. Given \(f(x) = 2x - 3x^2 \), use the difference quotient to determine the slope of the secant line where \(x = -2 \) and \(\Delta x = 3 \).
 ans: \(-5\)

7. Given \(f(x) = \sqrt{x} \), \(g(x) = x + 4 \). Find \((f \circ g)(x) \) and its domain.
 ans: \(\sqrt{x + 4}, [-4, \infty) \)

8. Given \(f(x) = \frac{x^2}{2x + 5} \)
 a. Find the intercepts \((0, 0) \)
 b. Find any horizontal asymptotes. none
 c. Find any vertical asymptotes. \(x = -2.5 \)
 d. Graph

9. Rewrite the radical function \(f(x) = \sqrt[3]{(x^2 - 4)^3} \) in exponential form and state the domain.
 ans: \(f(x) = (x^2 - 4)^\frac{1}{3}, \mathbb{R}, x \geq 2, x \leq -2 \)

10. Classify the functions below as exponential growth or decay:
 \(f(x) = \left(\frac{2}{3}\right)^x \) \hspace{1cm} ans: decay
 \(g(x) = \left(\frac{2}{3}\right)^{-x} \) \hspace{1cm} ans: decay
 \(h(x) = e^{0.7x} \) \hspace{1cm} ans: growth

11. Kyle deposits $2400 into an account that pays interest at a rate of 6.25% compounded weekly.
 a. How long before the account reaches $4,000?
 ans: \(8.18 \) yrs.
 b. How much is in the account after 3 years?
 ans: \$2,894.63

12. J.J. deposits $1500 into an account paying \(6\frac{3}{4}\% \) compounded continuously.
 a. How long before the balance is $2500?
 ans: \(7.6 \) yrs.
 b. What is the balance after 2 years?
 ans: \$1,716.81

13. Given \(f(x) = 2.5e^{0.02x} \) where \(x \) is the time in minutes and \(f(x) \) is the number of bacteria in the culture in thousands. Find the number of bacteria in the culture after 2 hrs, rounded to the nearest hundred.
 ans: 27,600 bacteria

14. Rewrite in logarithmic form:
 a. \(10^x = 2.4 \) \hspace{1cm} ans: \(\log 2.4 = x \)
 b. \(5^{x+1} = 3 \) \hspace{1cm} ans: \(\log_{3} 3 = x + 1 \)
 c. \(e^{x^2} = 14 \) \hspace{1cm} ans: \(\ln 14 = x^2 \)

15. Given \(\log_b 2 = -3 \), and \(\log_b 5 = 4 \), evaluate \(\log_b 20b^3 \).
 ans: \(1 \)

16. Given \(f(x) = \frac{2100}{1 + 20e^{-2x}} \)
 a. What is the initial population?
 b. What is the upper limiting population?
 ans: \(a. 100, b. 2100 \)

17. Given the following data for the average cost of a new home in thousands of dollars, let \(x \) represent the year 1960.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>21.5</td>
<td>26.6</td>
<td>40.1</td>
<td>75.5</td>
<td>110.2</td>
<td>145.6</td>
<td>176.2</td>
</tr>
</tbody>
</table>

 a. Find the best fitting model, using quadratic, cubic or logistic, and explain why you think this is the best model.

 ans: \(a. \ \) logistic, best fit of the data, and eventually levels off.

 Quad rises too fast, Cubic actually becomes neg.

 ans: b. \$213,880
18. An item sells for $9. If the fixed costs are $600 and the total costs are $2000 when 200 items are made and sold, find the cost equation.

\[C = 7x + 600 \]

19. Find the profit when 400 items are made and sold. (See #18)

\[\text{ans: } 200 \]

20. Find the best fitting curve between exponential and cubic regression for the following table of data, where \(x \) = number of years since 1980, and \(y \) = number of cases of menigitus in Houston.

<table>
<thead>
<tr>
<th>Year</th>
<th>'82</th>
<th>'85</th>
<th>88</th>
<th>90</th>
<th>'97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popul</td>
<td>8</td>
<td>12</td>
<td>25</td>
<td>30</td>
<td>56</td>
</tr>
</tbody>
</table>

\[\text{ans: cubic has the highest } r^2 \text{ value and decreases as time increases, which is likely if a cure is found.} \]

21. \(y^2 + 3x = 5 \), does this equation describe a function?

\[\text{ans: no, when you solve for } y, \text{ you get two solutions, } y = \pm \text{ therefore it fails a vertical line test.} \]

22. Find the difference quotient for:

\[f(x) = x^2 + 5x - 10 \]

\[\text{ans: } 2x + h + 5 \]

23. Solve \(\log_7(\log(\ln(x))) = 1 \)

\[\text{ans: } x = e^{10^7} \]

24. Given \(\log x = 8 \) and \(\log y = 12 \), evaluate:

\[\log(x^2y) \]

\[\text{ans: } 28 \]

25. Solve: \(5 \cdot 3^{2x - 1} = 2 \)

\[\text{ans: } x = \frac{1}{2} \left(1 + \frac{\log 4}{\log 3} \right) \]

26. Solve: \(\log_8 (x - 3) = 2 \)

\[\text{ans: } x = 67 \]

27. Solve: \(\log_2 x + \log_2 (x - 7) = 3 \)

\[\text{ans: } x = 8 \]

28. If planted with 100 trees, each tree produces $50 per year. Due to overcrowding, for each additional tree planted the yield drops 50 cents. How many trees should be planted to maximize the revenue?

\[\text{ans: } 100 \text{ trees} \]

If the cost to care for the trees (fertilizer and water) run $15 per year per tree, how many trees should be planted to maximize profit?

\[\text{ans: } 85 \text{ trees} \]

29. Find the domain of \(f(x) = \frac{2x^2 + 7x - 15}{x + 5} \)

\[\text{ans: } \mathbb{R}, x \neq -5 \]

30. Given the graphs of \(f(x) \) and \(g(x) \) below, show the graph of \(f(x - 3) + 2 \) and \(-g(x + 1) - 5\)

\[\text{31. Which of the following are polynomials?} \]

a) \(f(x) = 3x^2 - \frac{2}{x} + 6 \)

b) \(g(x) = 3\sqrt{x} + 2 \)

c) \(h(x) = e^x \)

d) \(F(x) = 5x^3 - \frac{3}{x-4} \)

\[\text{ans: d} \]

32. Given the logistic model: \(y = \frac{28}{1 + 6e^{-0.01x}} \).

a) what is the limiting value?

\[\text{ans: } 28 \]

b) what is the initial value?

\[\text{ans: } 4 \]

33. How long does it take for an account earning 10\% \% compounded quarterly to double?

\[\text{ans: } 6.53 \text{ years} \]

34. Graph the piecewise defined function

\[f(x) = \begin{cases}
|x - 2|, & \text{if } x < -2 \\
5, & \text{if } -2 \leq x \leq 1 \\
x^2 + 1, & \text{if } x > 2
\end{cases} \]

35. A machine purchased for $1800 has a useful life of 6 years and a scrap value of $500. Assuming a straight line depreciation, find its value at 4 years old.

\[\text{ans: } $933.33 \]

36. Solve: \(25^{3x} = 125^{x-4} \)

\[\text{ans: } x = -4 \]