Math150 Lecture Notes
2.3 - Applied Functions: VARIATION

Definition - Direct Variation
If the quantities x and y are related by the equation

$$y = k \cdot x$$

for values of $k \neq 0$, then y varies directly as x. The constant k is the constant of proportionality.

Example 1: The distance between you and a thunderstorm varies directly as the time interval between the lightening and the thunder.

(a) Suppose the thunder takes 5 seconds to reach you from a storm 5400 ft. away. Write the equation for the variation.

(b) Sketch the graph. What does k represent?

(c) If the time interval is 2 sec, how far away is the storm?

Definition - Inverse Variation
If the quantities x and y are related by the equation

$$y = \frac{k}{x}$$

for values of $k \neq 0$, then y varies inversely as x.

Example 2: z varies inversely as t. If $t = 3$ when $z = 5$, find the value of z when $t = \frac{1}{2}$.
Example 3: Given t is jointly proportional to x and y and inversely proportional to the square root of r.

(a) If $t = 30$ when $x = 3, y = 4$ and $r = 4$, find the equation that expresses the proportionality.

(b) What happens to the value of t when x and y are doubled and r is quadrupled?

(c) Find the value of t when $x = 4, y = 6$, and $r = 9$.

Example 4: The heat from a campfire is proportional to the amount of wood on the fire, and inversely proportional to the cube of the distance from the fire. If you are 20 ft from the fire, and someone doubles the amount of wood burning, how far from the fire would you have to be so that you feel the same heat as before?