Biologists observe that the population of a certain bacteria doubles in size every 3 hours. If the culture began with 1000 bacteria, 3 hrs later there were 2000 bacteria. After another 3 hours there were 4000 bacteria, and so on.

Let \(n = \)the number of bacteria after \(t \) hours, then

The number of bacteria after \(t \) hours is:

A population that experiences exponential growth increases according to the model \(n(t) = n_0e^{rt} \)

- \(n(t) = \)population at time \(t \)
- \(n_0 = \)initial size of the population aka \(n(0) \)
- \(r = \)relative rate of growth
- \(t = \)time

The initial bacterium count in a culture is 500. A biologist later makes a sample count of bacteria in the culture and finds that the relative rate of growth is 40% per hour.

a. Find a function that models the number of bacteria after \(t \) hours.
b. What is the estimated count after 10 hours?
c. Sketch the graph of the function \(n(t) \).
Example 2: Comparing Effects of Different Rates of Population Growth

In 2000, the population of the world was 6.1 billion people and the relative rate of growth was 1.4% How does this growth rate compare to say 1.0% by the year 2050?

Example 3: A certain breed of rabbit was introduced onto a small island about 8 years ago. The current rabbit population on the island is estimated to be 4100, with a relative growth rate of 55% per year.

What was the initial size of the rabbit population?
Estimate the population 12 years from now.

Example 4: The population of the world in 2000 was 6.1 billion, and the estimated relative growth rate was 1.4% per year. If the population continues to grow at this rate, when will it reach 122 billion?

Example 5: The number of Bacteria in a Culture

A culture starts with 10,000 bacteria, and the number doubles every 40 minutes.

a. Find a function that models the number of bacteria at time t.
b. Find the number of bacteria after one hour.
c. After how many minutes will there be 50,000 bacteria?
Radioactive Decay: If m_0 is the initial mass of a radioactive substance with half-life h, then the mass remaining at time t is modeled by the function $m(t) = m_0e^{-rt}$

Example 6: Radioactive Decay

Polonium-210 has a half-life of 140 days. Suppose a sample of this substance has a mass of 300 mg.

a. Find a function that models the amount of the sample remaining at time t.
b. Find the mass remaining after one year.
c. How long will it take for the sample to decay to a mass of 200 mg?
d. draw a graph of the sample mass as a function of time.

Logarithmic Scales

Chemists measured the acidity of a solution by giving its hydrogen ion concentration until Sorensen, in 1909, proposed a more convenient measure. He defined $pH = -\log[H^+]$ where $[H^+]$ is the concentration of hydrogen ions measured in moles per liter (M).

If $[H^+] = 10^{-4}M$, then $pH = -\log(10^{-4}) = -(−4) = 4$

Solutions with a pH of 7 are defined as neutral, those with pH < 7 are acidic, and those with pH > 7 are basic. Note: when the pH increases by one unit, $[H^+]$ decreases by a factor of 10.

The Richter Scale: $M = \log \frac{I}{I_S}$

The Decibel Scale: $\beta = 10\log \frac{I}{I_o}$
The Richter Scale: \(M = \log \frac{I}{S} \)

The 1906 earthquake in San Francisco had an estimated magnitude of 8.3 on the Richter scale. In the same year, the strongest earthquake ever recorded occurred on the Colombia-Equador border, and was four times as intense. What was the magnitude on the Richter scale?

The 1989 Loma Prieta Earthquake that shook San Francisco had a magnitude of 7.1 on the Richter scale. How many times more intense was the 1906 earthquake?

The Decibel Scale \(\beta = 10 \log \frac{I}{I_o} \)

Given: \(I_o = 10^{-12} W/m^2 \) the threshold of hearing in watts per sq. meter

Find the decibel intensity level of a jet engine during takeoff if the intensity was measured at 100\(W/m^2 \).
Four most common mathematical models

1) Exponential growth \(y = ae^{bx} \)

2) Exponential decay \(y = ae^{-bx} \)

3) Logistics growth model \(y = \frac{a}{1+be^{-(x-c)/d}} \)

4) Logarithmic models \(y = a + b \ln x \)
 \(y = a + b \log x \)
Examples: The population \(P \) of a city is given by \(P = 240,360 e^{0.012t} \) where \(t = 0 \) represents 1990. According to this model, when will the population reach 275,000?

Solution: \(275,000 = 240,360 e^{0.012t} \)

\[
\frac{275000}{240360} = e^{0.012t}
\]

\[
\ln \left(\frac{275,000}{240,360} \right) = \ln e^{0.012t}
\]

\[
\ln \frac{275,000}{240,360} = 0.012t
\]

\[
\ln \frac{275,000}{240,360} = t
\]

\[
\frac{250}{3} \ln \frac{275,000}{240,360} = t
\]

\(t \approx \)

Example 2: Find an exponential growth model whose graph passes through \((0, 4453)\) and \((7, 5024)\)

\[y = ae^{bx}\]

substitute for \((x, y) \rightarrow (0, 4453)\)

\[4453 = ae^{b \cdot 0}\]

\[4453 = ae^0\]

\[4453 = a\]

\[y = 4453e^{bx}\]

substitute for \((x, y) \rightarrow (7, 5024)\)

\[5024 = 4453e^{7b}\]

\[
\frac{5024}{4453} = e^{7b}
\]

\[
\ln \left(\frac{5024}{4453} \right) = 7b
\]

\[
\frac{1}{7} \ln \left(\frac{5024}{4453} \right) = b
\]

\(b \approx 0.01724\)

\[y \approx 4453e^{0.01724x}\]
To estimate the age of dead organic material use the following formula:

\[R = \frac{1}{10^{12}} e^{-t/8223} \]

The ratio of carbon 14 to carbon 12 in a newly discovered fossil is \(R = \frac{1}{10^{13}} \)

Estimate the age of the fossil.

\[
\frac{1}{10^{13}} = \frac{1}{10^{12}} e^{-\frac{t}{8223}} \\
10^{12} \cdot \frac{1}{10^{13}} = 10^{12} \cdot \frac{1}{10^{12}} e^{-\frac{t}{8223}} \\
\frac{1}{10} = e^{-\frac{t}{8223}} \\
\ln .1 = -\frac{t}{8223} \\
-8223 \ln .1 = t \\
\]

\[t \approx 18,934 \]

Logistics Growth Models

populations which initially have rapid growth, followed by a declining rate of growth.

On a college campus of 5000 students, one student returns from vacation with a contagious flu virus. The spread of the virus is modeled by:

\[y = \frac{5000}{1 + 4999e^{-0.8t}}, \quad t \geq 0 \]

\(y \) is the total number of students infected after \(t \) days.

The college will cancel classes when 40% or more of the students are ill.

a) how many students are infected after 5 days?

b) after how many days will classes be cancelled?