8.1 Find the \textbf{EXACT} value of each of the following:
1. \(\tan \frac{11\pi}{12} \)
2. \(\cos 165^\circ \)
3. \(\sin 105^\circ \)

Simplify each of the following:
4. \(\sin 28^\circ \cos 7^\circ - \cos 28^\circ \sin 7^\circ \)
5. \(\cos 5^\circ \cos 14^\circ + \sin 5^\circ \sin 14^\circ \)
6. \(\sin \frac{2\pi}{3} \sin \frac{\pi}{4} - \cos \frac{2\pi}{3} \cos \frac{\pi}{4} \)

Verify the following identities:
7. \(\cos (\pi + \theta) = -\cos \theta \)
8. \(\sin (x + \frac{\pi}{2}) = \cos x \)
9. \(\cos (x + y) - \cos (x - y) = -2\sin x \sin y \)
10. If \(\sin u = -\frac{\sqrt{2}}{4} \) for \(u \) in quadrant III and \(\tan v = -\frac{\sqrt{2}}{2} \) for \(v \) in quadrant IV, find \(\sec(u - v) \)

8.2

Given \(\sin \theta = -\frac{4}{8} \) and \(\theta \) is in quadrant III, find
11. \(\sin \frac{\theta}{2} \)
12. \(\cos \frac{\theta}{2} \)
13. \(\tan \frac{\theta}{2} \)

Verify the following identities:
14. \(\tan x = \frac{\sin 2x}{1+\cos 2x} \)
15. \(1 + \cos 2x = \cot x \cdot \sin 2x \)
16. \(\cos 2x = \frac{1-\tan^2 x}{1+\tan^2 x} \)

Find all solutions over the interval \([0, 2\pi)\)
17. \(\tan 2x = \tan x \)
18. \(\sec x + \tan x = 1 \)

Find the \textbf{EXACT} value of each of the following:
19. \(\sin \frac{\pi}{8} \)
20. \(\cos 67.5^\circ \)

21. Find the length of \(a \) in the following figure:

8.3

22. Solve the triangle \(\triangle ABC \), when \(B = 53^\circ, b = 7, c = 10 \)
23. Solve the triangle \(\triangle ABC \), when \(A = 80^\circ, C = 41^\circ, b = 30 \)
24. Two trains leave a train station at 10am traveling along straight tracks at 120 and 150km/hr, respectively. If the angle between their directions of travel is 118°, how far apart are the trains at 10:40 am?
25. Draw triangle \(\triangle ACD \) with point \(B \) on the side \(AC \). Given \(AB = 4 \) and angle \(A = 30^\circ \), and angle \(ABD = 125^\circ \), and angle \(C = 85^\circ \), find the length of the line segment \(BD \).

26. Estimate the height of the redwood tree in the following figure if the distance from \(Q \) to \(R \), 200 ft., is accurate to the nearest 10 feet.

27. A ship travels from point \(A \) for 2 hours at a speed of 167 km/hr on a course of \(N65^\circ E \) and then changes to a course of \(N15^\circ E \) for 3 hours at the same speed. After the 5 hrs, how far is the ship from point \(A \)?

28. Find the area of the following triangle:

\[\begin{align*}
&\text{ANSWERS:} \\
1. &\quad \frac{1-\sqrt{3}}{1+\sqrt{3}} \quad \text{or} \quad -2+\sqrt{3} \\
2. &\quad \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} \\
3. &\quad \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \\
4. &\quad \sin 21^\circ \\
5. &\quad \cos 9^\circ \\
6. &\quad -\cos \frac{11\pi}{12} \\
7. &\quad -\cos \theta = -\cos \theta
\end{align*} \]
8. $\cos x = \cos x$

9. $-2 \sin x \sin y = -2 \sin x \sin y$

10. $\frac{\sqrt{210} - 2\sqrt{105}}{-6}$

11. $\frac{2\sqrt{5}}{5}$

12. $\frac{-\sqrt{5}}{5}$

13. -2

14. $\tan x = \tan x$

15. $1 + \cos 2x = 1 + \cos 2x$

16. $\cos 2x = \cos 2x$

17. $0, \pi$

18. $0, \pi, \frac{3}{2} \pi$

19. $\frac{\sqrt{2} - \sqrt{2}}{2}$

20. $-\frac{\sqrt{2} - \sqrt{2}}{2}$

21. 3

22. no triangle exists

23. angle $B = 59^\circ$, $c \approx 23$, $a \approx 35$

24. 155 km

25. 4.5 units

26. 210 feet

27. 760 km

28. 68.2 sq units

If you spot any MORE typing errors, please email me at: drost@math.tamu.edu