• Average Amount in the Account=
\[\frac{1}{b-a} \int_a^b f(x) \, dx \]

• Continuous flow of money
\[A(t) = \int_a^b f(t) \, dt \]

• Future Value of an Annuity: Continuous flow of money
\[S \approx \int_0^T P e^{r(T-t)} \, dt \]

• Area between two curves, if \(f(x) \geq g(x) \):
\[\int_a^b [f(x) - g(x)] \, dx \]

• Consumers’ Surplus: For demand function \(d \) and point \((x_m, d_{mp})\) on the graph of \(d \), where \(x_m \) is the market demand and \(d_{mp} \) is the market price,
\[C.S. = \int_0^{x_m} [d - d_{mp}] \, dx \]

• Producers’ Surplus: For supply function \(s \) and point \((x_m, d_{mp})\) on the graph of \(s \), where \(x_m \) is the market demand and \(d_{mp} \) is the market price,
\[P.S. = \int_0^{x_m} [d_{mp} - s] \, dx \]

1. Find the average value of the function:
\[f(x) = x^3 \]
on the interval \([-1, 1]\)
ans: 0

2. If \(F(0) = 1 \), what is \(F(2) \)?
 a) What is \(F(8) \)?
 ans: 11
 ans: 28.5

3. Area Between Two Curves
 a) find the area between \(f(x) = \sqrt{x} \) and \(g(x) = x^2 \)
 ans: \(\frac{1}{3} \)
 b) find the area between \(f(x) = -x \) and \(g(x) = 2 - x^2 \) on the interval \([-1, 3] \)
 ans: \(\frac{10}{3} \)

4. Lynnette deposits $5,000 into an account paying 6.5% annual interest compounded continuously. What is the average amount in her account, assuming no withdrawals, over the next 3 yrs?

5. Troy and Greta open a college savings account for their new son Quinn, and at the first of each 3rd month they deposit $750. If the account earns 6.45% annual interest, compounded continuously, how much will be in the account when Quinn heads for college in 18 years?

6. Find the area between the functions pictured below, \(f(x) = -2x^2 + 8 \) and \(g(x) = -2x + 4 \).

7. Evaluate the function
\[f(x, y) = \sqrt{8 - x - y^2} \]
at
 a. \((2, 1)\)
 ans:
 b. \((-4, 2)\)
 ans:
 c. \((-1, 0)\)
 ans:

8. Find the domain:
 a. \(f(x, y) = \frac{y}{x-2y} \)
 b. \(f(x, y) = \sqrt{8 - x + y} \)
 c. \(f(x, y) = 3x^2 \sqrt{y} \)
 d. \(f(x, y) = \sqrt{16 + x^2 + y} \)

9. Find the surface area of a closed rectangular box whose volume is 1000 \(ft^3 \) as \(S(x, y) \)
10. A company sells gadgets and widgets. The gadgets sell at \(p = 120 - 2x - 3y \) and the widgets sell at \(q = 200 - x - 5y \), where \(x \) is the number of gadgets sold and \(y \) is the number widgets sold. Find the revenue function, \(R(x, y) \), and the value of \(R(10, 20) \).

11. Partial Derivatives: find \(f_x \) and \(f_y \)
 a. \(f(x, y) = 3x + 4y^2 - 2xy \)
 b. \(f(x, y) = \sqrt{8 - x^2 - y^2} \)
 c. \(f(x, y) = x^4 \cdot e^{2xy} \)
 d. \(f(x, y) = \frac{x}{y^2 - 1} \)
 e. \(f(x, y) = \ln (x^2 + 4y) \)

 a. \(f(x, y) = 3x^2 + 4y^2 - 2x^2 y^3 \)
 b. \(f(x, y) = e^{x-2y} \)
 c. \(f(x, y) = \ln(2x + y^2) \)

15. Harry’s Habidashery has a supply function of

 \[s(x) = 0.2x^2 + 20, \]

 and a demand function

 \[d = -x^2 + 500. \]

 Find:
 - the equilibrium point.
 - the consumers’ surplus at equilibrium demand.
 - the producers’ surplus at equilibrium demand.