Math 152 (honors sections)

Harold P. Boas
boas@tamu.edu
Reminder

Second examination is Wednesday, November 3.

The exam covers through section 10.4.

Convergence tests so far

- If $a_n \not\to 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.

- A geometric series with $|\text{ratio}| < 1$ converges.

- Integral test for positive decreasing functions: the improper integral $\int_{1}^{\infty} f(x) \, dx$ and the corresponding series $\sum_{n=1}^{\infty} f(n)$ either both converge or both diverge.

- Inequality comparison test for positive terms: if $0 < a_n < b_n$ (at least for n large) and if $\sum b_n$ converges, then $\sum a_n$ converges too.

- Limit comparison test for positive terms: if $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists (finite limit), and if $\sum b_n$ converges, then $\sum a_n$ converges too.
Root test (not in book)

Example: \(\sum_{n=1}^{\infty} \frac{n}{2^n} \) converges

This is not a geometric series, and it is \textit{bigger} than the convergent geometric series \(\sum_{n=1}^{\infty} \frac{1}{2^n} \), so the comparison test does not seem to help.

Since \(\frac{n}{2^n} = \left(\frac{n^{1/n}}{2} \right)^n \), and since \(\lim_{n \to \infty} n^{1/n} = 1 \), we have \(\frac{n}{2^n} < \left(\frac{1.1}{2} \right)^n \) when \(n \) is large, so we can use the comparison test after all: compare to the convergent geometric series \(\sum_{n=1}^{\infty} \left(\frac{1.1}{2} \right)^n \).

Root test and ratio test

\textbf{Root test:} If \(0 < a_n \), and if \(\lim_{n \to \infty} a_n^{1/n} < 1 \), then \(\sum_{n=1}^{\infty} a_n \) converges. Moreover, if \(\lim_{n \to \infty} a_n^{1/n} > 1 \), then \(\sum_{n=1}^{\infty} a_n \) diverges (because then \(a_n \not\to 0 \)). If \(\lim_{n \to \infty} a_n^{1/n} = 1 \), the test gives no information.

\textbf{Ratio test:} Exactly the same as the root test, except look at \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \) instead of \(\lim_{n \to \infty} a_n^{1/n} \).

Example: \(\sum_{n=1}^{\infty} \frac{3^n (n!)^2}{(2n)!} \).

\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1}(n+1)!(n+1)!}{(2n+2)!} \cdot \frac{3^n (n!)^2}{(2n)!} = \lim_{n \to \infty} \frac{3(n+1)^2}{(2n+2)(2n+1)} = \frac{3}{4} < 1,
\]

so the original series converges.
Series with some negative terms

Negative terms can only help with convergence:
if \(\sum_{n=1}^{\infty} |a_n| \) converges, then so does \(\sum_{n=1}^{\infty} a_n \).

An absolutely convergent series converges.

Example: \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \) converges because \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges.

The two series sum to different values, however: \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12} \), and \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \).

Example: \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges (harmonic series),
yet \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \) converges (in fact to the value \(\ln\left(\frac{1}{2}\right) \)).

Alternating series test

If \(a_n \downarrow 0 \), then \(\sum_{n=1}^{\infty} (-1)^n a_n \) converges.

Error estimate: When the alternating series test applies, the sum of the series is trapped between any two consecutive partial sums.

Example: \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4} \) converges,

\[
-1 + \frac{1}{2^4} - \frac{1}{3^4} + \frac{1}{4^4} - \frac{1}{5^4} + \cdots < \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4} < -1 + \frac{1}{2^4} - \frac{1}{3^4} + \frac{1}{4^4} < -0.94754 < \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4} < -0.9459
\]

Exact value: \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4} = \frac{7\pi^4}{720} \approx -0.947033 \).
Homework

- Read section 10.4, pages 605–610.
- Do the Suggested Homework problems for section 10.4.

Monday we will review for the exam and look at an old exam.