Math 409-502

Harold P. Boas
boas@tamu.edu
Problem 5 on the exam

Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} \left(\frac{1 + 2^n}{1 + n^2} \right) x^n$.

Solution. Here is one of several valid methods.
First observation: since the open interval of convergence $(-R, R)$ is symmetric, we may as well assume that $x > 0$.
Second observation: now the asymptotic comparison test applies, so the new series $\sum_{n=1}^{\infty} \left(\frac{2^n}{n^2} \right) x^n$ converges for the same positive values of x.
By the root test, this new series converges when
$$1 > \lim_{q \to \infty} \frac{2x}{n^{2/q}} = 2x.$$
So the radius of convergence is $1/2$.
Problem 4(b) on the exam

If a function \(g \) has a jump discontinuity at 0, and a function \(h \) is continuous at 0, then the product function \(gh \) has a jump discontinuity at 0.

True or false?

“Jump discontinuity” means that \(g \) has one-sided limits, but \(\lim_{x \to 0^-} g(x) \neq \lim_{x \to 0^+} g(x) \).

Since \(h \) is continuous, the product function \(gh \) has one-sided limits equal to \(h(0) \cdot \lim_{x \to 0^-} g(x) \) and \(h(0) \cdot \lim_{x \to 0^+} g(x) \). These one-side limits are equal when \(h(0) = 0 \) and unequal when \(h(0) \neq 0 \).

So the answer is “false”, but the statement is true most of the time (whenever \(h(0) \neq 0 \)).

Problem 4(a) on the exam

If a function \(f \) is locally bounded on an interval, then \(f \) is bounded on the interval.

True or false?

Theorem 10.4 on page 146 says the statement is true if the interval is compact.

On non-compact intervals, however, the statement is false. Example: \(1/x \) on the open interval \((0,1)\).
Problem 3(b) on the exam

Prove from the \(\varepsilon \)-\(\delta \) definition that the function \(1/x \) is continuous at the point 1.

Fix \(\varepsilon > 0 \). We must find \(\delta > 0 \) such that

\[
\left| \frac{1}{x} - 1 \right| < \varepsilon
\]

whenever \(|x - 1| < \delta \). Now

\[
\left| \frac{1}{x} - 1 \right| = \frac{|x - 1|}{|x|},
\]
and the difficulty is that the denominator could be small.

One way to handle the difficulty is to take \(\delta = \min\left(\frac{1}{2}, \frac{\varepsilon}{2}\right) \).

If \(|x - 1| < \delta \), then in particular \(|x - 1| < \frac{1}{2} \), so \(x > \frac{1}{2} \),

whence \(\frac{1}{x} < 2 \).

Then

\[
\frac{|x-1|}{|x|} \leq 2 |x - 1| < 2\delta \leq \varepsilon.
\]

Thus we have the required \(\delta \).

Homework

Use the \(\varepsilon \)-\(\delta \) definition of continuity to prove that

1. the function \(1/x^2 \) is continuous at the point 1;
2. the function \(1/x \) is continuous at the point \(1/10 \).