Exercise on the Weierstrass \wp function

This exercise provides a direct solution (without using series expansions) of the homework problem stating that

$$\det \begin{vmatrix} \wp(z_1) & \wp'(z_1) & 1 \\ \wp(z_2) & \wp'(z_2) & 1 \\ \wp(z_1 + z_2) - \wp'(z_1 + z_2) & 1 \end{vmatrix} = 0,$$

(*)

where \wp is the Weierstrass doubly periodic meromorphic function defined with respect to an arbitrary lattice, and all the terms in the determinant are assumed to be finite (that is, the points z_1, z_2, and $z_1 + z_2$ are not points of the lattice).

1. Deduce from the residue theorem that if f is meromorphic in a simply connected region, if γ is a simple closed curve in the region, if the zeroes of f inside γ are a_1, \ldots, a_m (repeated according to multiplicity), if the poles of f inside γ are b_1, \ldots, b_n (repeated according to multiplicity), and if f has no zeroes or poles on the curve γ, then

$$\frac{1}{2\pi i} \int_\gamma \frac{zf''(z)}{f(z)} \, dz = \sum_{j=1}^{m} a_j - \sum_{k=1}^{n} b_k.$$

(Compare Exercise 2 on page 174, which you did last semester.)

2. Suppose f is a doubly periodic meromorphic function that has a multiple pole at the origin and no other poles within a fundamental parallelogram centered at the origin. Deduce from part 1 that if the zeroes of f in the parallelogram are a_1, \ldots, a_m, then $a_1 + \cdots + a_m = 0$.\footnote{Correction added 19 April: the conclusion should be that $a_1 + \cdots + a_m \equiv 0$ modulo the lattice; that is, $a_1 + \cdots + a_m$ is an element of the lattice.}

3. Fix a lattice and a corresponding Weierstrass \wp function. Let z_1 and z_2 be distinct complex numbers such that z_1, z_2, and $z_1 + z_2$ are not points of the lattice, and consider the determinant function D defined by

$$D(z) = \det \begin{vmatrix} \wp(z_1) & \wp'(z_1) & 1 \\ \wp(z_2) & \wp'(z_2) & 1 \\ \wp(z) & \wp'(z) & 1 \end{vmatrix}.$$

Show that D is a doubly periodic meromorphic function of z of order 3 that has zeroes at z_1 and z_2. Use part 2 to locate a third zero of D, and deduce equation (*) from the symmetry properties of \wp and \wp'.\footnote{Correction added 19 April: the conclusion should be that $a_1 + \cdots + a_m \equiv 0$ modulo the lattice; that is, $a_1 + \cdots + a_m$ is an element of the lattice.}