Course Title: MATH 151 Engineering Mathematics I
Term: Fall 2016
Class Times and locations: Sections 531-533: TR 2:20-3:35 Heldenfles 111
Sections 561-563: TR 12:45-2:00 Heldenfles 111
Lab/Recitation Sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Time</th>
<th>Monday Location</th>
<th>Wednesday Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>531</td>
<td>MW 9:10-10:00</td>
<td>Blocker 123</td>
<td>Heldenfels 118</td>
</tr>
<tr>
<td>532</td>
<td>MW 10:20-11:10</td>
<td>Blocker 124</td>
<td>Civil Engineering 222</td>
</tr>
<tr>
<td>533</td>
<td>MW 11:30-12:20</td>
<td>Blocker 124</td>
<td>Civil Engineering 222</td>
</tr>
<tr>
<td>561</td>
<td>MW 11:30-12:20</td>
<td>Blocker 126</td>
<td>Civil Engineering 223</td>
</tr>
<tr>
<td>562</td>
<td>MW 12:40-1:30</td>
<td>Blocker 122</td>
<td>Civil Engineering 136</td>
</tr>
<tr>
<td>563</td>
<td>MW 1:50-2:40</td>
<td>Blocker 126</td>
<td>Civil Engineering 223</td>
</tr>
</tbody>
</table>

Instructor Information
Instructor: Joe Kahlig
Phone number: Department of Mathematics: 845-3261
e–mail: kahlig@math.tamu.edu
Office: Blocker 245C
Web page: http://www.math.tamu.edu/~joe.kahlig
Departmental Webpage http://www.math.tamu.edu/courses/math151/
Office Hours: MWF: 9am-11am
MW: 2pm-4pm
other times by appointment

Course Description and Prerequisites

Description: Credit 4) Rectangular coordinates, vectors, analytic geometry, functions, limits, derivatives of functions, applications, integration, computer algebra. MATH 171 designed to be a more demanding version of this course. No credit will be given for more than one of MATH 131, MATH 142, MATH 147, MATH 151 and MATH 171.

Prerequisite: MATH 150 or equivalent or acceptable score on TAMU Math Placement Exam.

Calculator Policy: Calculators are not allowed on exams or quizzes, although they may be used, and are often necessary, on homework assignments. Use of a calculator on a quiz or exam is considered academic dishonesty and will be reported to the Aggie Honor Council.

Learning Outcomes: This course focuses on quantitative literacy in mathematics along with real world applications to physics, related rate problems, and optimization. Upon successful completion of this course, students will be able to:

- Understand vectors and vector functions, both graphically and quantitatively, and apply them to real world situations involving velocity, forces, and work.
- Construct vector and parametric equations of lines and understand vector functions and their relationship to parametric equations.
- Understand the concept of a limit graphically, numerically, and algebraically, and apply the relationship between limits, continuity, and differentiability in determining where a function is continuous and/or differentiable.
- Define the limit definition of the derivative and calculate derivatives using the limit definition, differentiation formulas, the chain rule, and implicit differentiation, with applications to tangent line and velocity problems.
- Calculate limits and derivatives of vector functions with applications to physics such as computing velocity and acceleration vectors.
- Identify exponential, logarithmic, and inverse trigonometric functions, and compute limits and derivatives involving these classes of functions.
• Apply the derivative to mathematically model velocity and acceleration as well as real world related rate applications, such as calculating the rate at which the distance between two moving objects is changing or the rate at which the volume of a cone being filled with water is changing.

• Approximate functions and function values using the derivative and the tangent line.

• Identify and understand indeterminate forms and apply the derivative to calculate limits using L'Hospital's Rule.

• Understand and apply the Intermediate Value Theorem and the Mean Value Theorem, and be able to logically determine when these theorems can be used.

• Use calculus and logic to sketch graphs of functions and analyze their properties, including where a function is increasing/decreasing and in describing the concavity of the function.

• Determine the maximum/minimum values of functions, including applied optimization problems.

• Compute antiderivatives and understand the concept of integration as it relates to area and Riemann sums.

• Articulate the relationship between derivatives and integrals using the Fundamental Theorem of Calculus, and evaluate definite integrals using the Fundamental Theorem of Calculus.

• Use a Computer Algebra System to solve problems.

Textbook and/or Resource Material

• Textbook: Stewart, Calculus: Early Vectors, Cengage Learning. The textbook is available in different formats. You can buy a hard-back or loose-leaf copy or you can purchase an eBook within the online system WebAssign. See the link below for more information on WebAssign and purchasing options.

• WebAssign Account Access Code: WebAssign will be used for homework in this class. In order to use WebAssign, you must purchase an access code. For access code and textbook purchasing information and options, please see the Student Information Page at http://www.math.tamu.edu/courses/eHomework/

Grading Policies

Due to FERPA privacy issues, I cannot discuss grades over email or phone. If you have a question about your grade, please come see me in person.

Grade Breakdown

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>Weekly</td>
<td>7%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>Weekly</td>
<td>8%</td>
</tr>
<tr>
<td>Labs</td>
<td>See Lab Schedule</td>
<td>5%</td>
</tr>
<tr>
<td>Common Exam I</td>
<td>Thursday, September 29, 7:30-9:30pm</td>
<td>20%</td>
</tr>
<tr>
<td>Common Exam II</td>
<td>Thursday, October 27, 7:30-9:30pm</td>
<td>20%</td>
</tr>
<tr>
<td>Common Exam III</td>
<td>Tuesday, November 29, 7:30-9:30pm</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam*</td>
<td>Sections 531-533: Wednesday, Nov. 14 at 1pm-3pm</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Sections 561-563: Wednesday, Nov. 14 at 8am-10am</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

* All final exam are given in the classroom for the lecture.

Grading Scale

<table>
<thead>
<tr>
<th>Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 ≤ Average ≤ 100</td>
<td>A</td>
</tr>
<tr>
<td>80 ≤ Average <90</td>
<td>B</td>
</tr>
<tr>
<td>67 ≤ Average <80</td>
<td>C</td>
</tr>
<tr>
<td>57 ≤ Average <67</td>
<td>D</td>
</tr>
<tr>
<td>Average < 57</td>
<td>F</td>
</tr>
</tbody>
</table>
Attendance and Makeup Policies

- The University views class attendance as an individual student responsibility. It is essential that students attend class and complete all assignments to succeed in the course. University student rules concerning excused and unexcused absences as well as makeups can be found at http://student-rules.tamu.edu/rule07.

 Student Rule 7.3: Students may be excused from attending class on the day of a graded activity or when attendance contributes to a student’s grade, for the reasons stated in Section 7.1, or other reason deemed appropriate by the student’s instructor....

- **Excused absences:** To be excused the student must notify me in writing (acknowledged e-mail message is acceptable) prior to the date of absence if such notification is feasible. In cases where advance notification is not feasible (e.g. accident, or emergency) the student must provide notification by the end of the second working day after the absence. In all cases where an exam is missed due to an injury or illness, whether it be more or less than 3 days, I require a doctor’s note.

 - I will not accept the University Explanatory Statement for Absence from Class form.
 - An absence due to a non-acute medical service or appointment (such as a regular checkup) is not an excused absence.
 - Providing a fake or falsified doctor’s note or other falsified documentation is considered academic dishonesty, will be reported to the Aggie Honor Council, and will result in an F* in the course.

- Makeup quizzes will NOT be allowed unless the absence is excused. If the quiz you missed was given in recitation, then provide the excuse documentation to your TA since they will provide the makeup.

- Makeup exams will only be allowed provided the absence is excused. All make-up exams must be scheduled by me for one of the scheduled makeup times provided by the Math Department. According to Student Rule 7.3, you are expected to attend the scheduled makeup unless you have a University-approved excuse for missing the makeup time as well. If there are multiple makeup exam times, you must attend the earliest makeup time for which you do not have a University-approved excuse. The list of makeup times will be available at http://www.math.tamu.edu/courses/makeupexams.html

Additional Course Information and Policies

Common Exams: There will be 3 common exams during the semester. These exams are evening exams taken by all Math 151 students at the same time. Bring your Texas A&M student ID and a pencil to all exams. The location of the common exams will be determined at a later time. The dates for the exams can be found under the grading policies.

- You will need the Texas A&M scantron for all exams. See my webpage for a picture of it.

- For Common Exams 1 and 2 only, if your score is below a 70, you will have the opportunity to take a different exam covering the same content to improve your grade. The maximum score you may earn on a retest is 70. If your score on the retest is higher than your first attempt, it will replace your original score, up to the maximum of 70. A retest may only be taken when you have first taken the common exam.

Final Exam: The final exam will be a cumulative (comprehensive) exam and is required for all students. If your final exam grade is higher than your lowest test grade, the grade on your final will replace your lowest test grade. **The final exam may NOT replace an exam that you did not take.** The day and time of the final exam are determined by the University.

Homework: Graded homework for this course will primarily consists of electronic assignments that will be worked and submitted in WebAssign.

- Important WebAssign information such as how to purchase access, how to log in and take assignments, the Student Help Request Form, and other WebAssign issues, can be found at http://www.math.tamu.edu/courses/eHomework.
• The homework for a section will be due approximately 3 days after the lecture over that material is completed. For every assignment, you may request an extension that will extend the original due date by two days. Any problem submitted during the extension period will only receive half credit. An extension will not be granted if it is requested more than two days after the original due date. Directions on how to use the webassign system can be found on my web page.

• At least one homework assignment will be dropped when computing the average.

Lab/Recitation: Your section will meet twice weekly with your TA for recitation and lab. In lab you will complete MATLAB assignments. In recitation sessions, your TA will answer questions, review material, and give weekly quizzes for a grade. You must attend the recitation and lab you are registered for.

Quizzes: Quizzes will primarily be given in the recitations; however, I may give quizzes during the lectures. At least one quiz grade will be dropped when computing the average.

Grade Appeals: If you believe an error has been made in grading of an exam, you have one week from the return of the exam to let me know. After that one week period, no change to the grade will be made. The only exception to this is if the points on the exam were totaled incorrectly. If a grade has been recorded incorrectly, you may talk to me anytime during the semester about fixing the grade. I will need to see the actual assignment before the grade will be changed.

Q-drop: The last day to Q-Drop a class is November 18th.

Old Papers: All papers not picked up after the semester will be disposed of. If you want your papers, be sure to pick them up before the semester is over.

Class Announcements, E-Mail Policy and Communications: Class announcements will be posted to my class web page and sent to your university e-mail account. If you send me an e-mail, please include your name and course information (i.e. class and section) as well as any additional information that I might need to help respond to your e-mail.

Copyright: All printed handouts and web-materials are protected by US Copyright Laws. No multiple copies can be made without written permission by the instructor.

Additional Helpful Links: All of these links (and others) are on my webpage.

• Help Sessions http://www.math.tamu.edu/courses/helpsessions.html
• Week in Reviews http://www.math.tamu.edu/courses/weekinreview.html
• Academic Calendar http://registrar.tamu.edu/General/Calendar.aspx
• Final Exam Schedule http://registrar.tamu.edu/General/FinalSchedule.aspx

Americans with Disabilities Act (ADA)
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, currently located in the Disability Services building at the Student Services at White Creek complex on west campus or call 979-845-1637. For additional information, visit http://disability.tamu.edu

Academic Integrity
Cheating and other forms of academic dishonesty will not be tolerated.

Aggie Honor Code: An Aggie does not lie, cheat, or steal, or tolerate those who do.

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the TAMU community from the requirements or the processes of the Honor System. For additional information please visit: http://aggiehonor.tamu.edu
Course Topics (Tentative weekly schedule)

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review of Trigonometry; Vectors</td>
<td>Appendix D and Section 1.1</td>
</tr>
<tr>
<td>2</td>
<td>The Dot Product; Vector Functions; The Limit of a Function</td>
<td>Sections 1.2-1.3, 2.2</td>
</tr>
<tr>
<td>3</td>
<td>Calculating Limits; Continuity; Limits at Infinity and Horizontal Asymptotes</td>
<td>Sections 2.3, 2.5-2.6</td>
</tr>
<tr>
<td>4</td>
<td>Tangents, Velocities, and Other Rates of Change; Derivatives</td>
<td>Sections 2.7, 3.1</td>
</tr>
<tr>
<td>5</td>
<td>Differentiation Formulas, Exam 1 (Covers 1.1 through Section 3.1)</td>
<td>Section 3.2</td>
</tr>
<tr>
<td>6</td>
<td>Derivatives of Trig Functions; The Chain Rule; Implicit Differentiation</td>
<td>Sections 3.4-3.6</td>
</tr>
<tr>
<td>7</td>
<td>Derivatives of Vector Functions; Higher Derivatives; Slopes and Tangents to Parametric Curves; Related Rates</td>
<td>Sections 3.7-3.10</td>
</tr>
<tr>
<td>8</td>
<td>Differentials, Linear and Quadratic Approximations; Exponential Functions and their Derivatives</td>
<td>Sections 3.11, 4.1</td>
</tr>
<tr>
<td>9</td>
<td>Inverse Functions, Logarithmic Functions, Exam 2 (Covers 3.2 through Section 4.2)</td>
<td>Sections 4.2-4.3</td>
</tr>
<tr>
<td>10</td>
<td>Derivatives of Logarithmic Functions; Exponential Growth and Decay; Inverse Trig Functions</td>
<td>Sections 4.4-4.6</td>
</tr>
<tr>
<td>11</td>
<td>LHospitals Rule; What does f say about f; Max/Min Values</td>
<td>Sections 4.8, 5.1-5.2</td>
</tr>
<tr>
<td>12</td>
<td>Derivatives and Shapes of Curves; Applied Max/Min Word Problems; Antiderivatives</td>
<td>Sections 5.3, 5.5, 5.7</td>
</tr>
<tr>
<td></td>
<td>Sigma Notation; Area; Thanksgiving Holiday</td>
<td>Sections 6.1-6.2</td>
</tr>
<tr>
<td>14/15</td>
<td>Exam 3 (Covers 4.2 through Section 6.1), The Definite Integral; The Fundamental Theorem of Calculus</td>
<td>Sections 6.3-6.4</td>
</tr>
</tbody>
</table>

Core Objectives

Critical Thinking

- Students will think critically about limits in determining how the limit conceptually relates to the behavior of the function.
- Students will think critically about continuity and differentiability to justify whether a function is continuous and or differentiable at a point.
- Students will evaluate the proper technique to use when computing limits and derivatives of functions.
- Students will synthesize data determined from the first and second derivatives to determine the properties and shape of a function.
- Students will use inquiry to determine on what intervals a function is increasing/decreasing and to determine the intervals of concavity of the function by analyzing the signs of the first and second derivatives.
- Students will innovatively think about how to solve related rate word problems and optimization problems.
- Students will analyze functions using continuity and the derivative in determining the maximum and minimum values of the function, and if they exist.
- Students will develop a critical understanding of the relationship between the derivative and the integral using the Fundamental Theorem of Calculus.
Communication Skills

- Students will recognize and construct graphs of basic functions, including polynomials, exponential functions, logarithmic functions, and trigonometric functions.
- Students will justify solutions to optimization problems in writing.
- Students will interpret information from the derivatives of a function in order to develop a visual sketch of the graph of the function and to communicate in writing the properties of the function.
- Students will identify points of discontinuity and non-differentiability by examining the graphs of functions.
- Students will express mathematical concepts, such as the definition of the derivative, both abstractly with equations and in writing solutions to problems.
- Students will develop solutions to problems that involve the use of theorems, such as the Squeeze Theorem, the Intermediate Value Theorem, and the Mean Value Theorem.
- Students will use graphs of functions to determine the value of definite integrals as they relate to area.
- Students will be required to communicate orally with other group members when working on Computer Algebra System projects or other group activities.
- Students will communicate orally in group discussion in the required weekly recitation sessions.

Empirical and Quantitative Skills

- Students will analyze limits numerically to determine the sign of the infinite limit.
- Students will analyze numerical data in determining the signs of the first and second derivative in order to make conclusions on the shape of the graph.
- Students will compute derivatives and interpret the results as they relate to tangent line, velocity, and other rate of change problems.
- Students will numerically approximate the values of a function by using the tangent line approximation.
- Students will calculate antiderivatives of functions and use initial data to determine any unknown constants.
- Students will make conclusions involving maximum and minimum values of functions (both local and absolute) based on information from the derivative.
- Students will manipulate given information to develop a function to be used in optimization problems and then apply calculus to find and interpret the optimal solution.
- Students will approximate the value of a definite integral numerically using Riemann sums.
- Students will compute definite integrals and interpret the results as they relate to area under a curve.
- Students will manipulate given information to create a related rate model involving known quantities, and then apply calculus to solve for an unknown rate of change.