

Homework Assignment 3

1. Let X be a topological space. Recall that a set $A \subset X$ is said to be nowhere dense in X if \overline{A} contains no nonempty open sets.

 (a) Let $U \subset X$ be open. Show that the boundary of U is closed and nowhere dense in X.

 (b) Conversely, show that every closed, nowhere dense set is the boundary of an open set.

2. An open subset U in a topological space is said to be regularly open if U is the interior of its closure. A closed set is regularly closed is it is the closure of its interior. Show:

 (a) The complement of a regularly open set is regularly closed, and vice versa.

 (b) There are open sets in \mathbb{R} (with the usual Euclidean topology) which are not regularly open.

 (c) If A is any subset of a topological space, then $\text{int}(\overline{A})$ (the interior of the closure of A) is regularly open.

3. Let X be the Sliced Pie space (Assignment #2, problem 6).

 (a) Given any line L in \mathbb{R}^2, describe the subspace topology that one gets on L from this new topology.

 (b) Show that Sliced Pie topology is not first countable.

4. Let \mathbb{R}_l denote the real numbers under the lower limit topology (the left-closed, right-open interval topology). Describe the closure in \mathbb{R}_l of the following sets:

 (a) $X = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$.

 (b) $X = \left\{ -\frac{1}{n} : n \in \mathbb{N} \right\}$.

 (c) $X = \mathbb{Q}$, the set of rational numbers.

5. Given a topological space X and a subset $A \subset X$, one says that $x_0 \in X$ is an accumulation point of A if every neighborhood U of x_0 contains a point of A other than x_0.

 (a) Show that A is closed in X if and only if it contains all of its accumulation points.

 (b) Show that the closure of A is the union of A with the set of its accumulation points.
6. Let $\mathbb{R}_\mathbb{Z}^2$ denote the plane with the Zariski topology. A basis \mathcal{B} for $\mathbb{R}_\mathbb{Z}^2$ consists of all subsets of \mathbb{R}^2 whose complements are zero sets of polynomials with real coefficients. That is, U is a basic open set for $\mathbb{R}_\mathbb{Z}^2$ if there is a polynomial $p : \mathbb{R}^2 \to \mathbb{R}$ with real coefficients such that $U = \mathbb{R}^2 - \{(x, y) : p(x, y) = 0\} = \{(x, y) : |p(x, y)| > 0\}$.

(a) Show that \mathcal{B} is a basis for a topology; i.e., show that \mathcal{B} is closed under finite intersections.

(b) Let $f(x, y)$ and $g(x, y)$ be two polynomials with real coefficients, and define a function $F : \mathbb{R}_\mathbb{Z}^2 \to \mathbb{R}_\mathbb{Z}^2$ by $F(x, y) = (f(x, y), g(x, y))$. Show that F is continuous in the Zariski topology.