Assignment 3
Solutions to Selected Problems

1. Let \(X \) be a topological space. Recall that a set \(A \subseteq X \) is said to be nowhere dense in \(X \) if \(\overline{A} \) contains no nonempty open sets.

 (a) Let \(U \subseteq X \) be open. Show that the boundary of \(U \) is closed and nowhere dense in \(X \).

 (b) Conversely, show that every closed, nowhere dense set is the boundary of an open set.

Answer. Regarding (a), \(\partial U = \overline{U} - U \) is closed. Furthermore, if \(W \subseteq \partial U \) is an open neighborhood of \(x \), then \(x \notin U \) by definition.

Regarding (b), let \(F \) be a closed, nowhere dense set, and \(U = X - F \). Clearly \(U \) is open and \(\overline{U} - U \subseteq F \). On the other hand, \(F - \overline{U} = \emptyset \) since \(F \) is nowhere dense.

2. An open subset \(U \) in a topological space is said to be regularly open if \(U \) is the interior of its closure. A closed set is regularly closed if it is the closure of its interior. Show:

 (a) The complement of a regularly open set is regularly closed, and vice versa.

 (b) There are open sets in \(\mathbb{R} \) (with the usual Euclidean topology) which are not regularly open.

 (c) If \(A \) is any subset of a topological space, then \(\text{int}(\overline{A}) \) (the interior of the closure of \(A \)) is regularly open.

Answer. For (a) and (c), review the solution of problem 1. For (b), consider \((-1,0) \cup (0,1)\).

3. Let \(X \) be the Sliced Pie space (Assignment #2, problem 6).

 (a) Given any line \(L \) in \(\mathbb{R}^2 \), describe the subspace topology that one gets on \(L \) from this new topology.

 (b) Show that Sliced Pie topology is not first countable.

Answer. (a) The subspace topology is the discrete topology.

(b) Let \(S \) be the intersection of a countable collection of sets in \(B \) centered at \(x \). Then \(S \) will omit at most a countable number of lines thought \(x \). Any set \(U \in B \) centered at \(x \) that omits some other line cannot be the union of sets in \(B \) centered at \(x \).

4. Let \(\mathbb{R}_* \) denote the real numbers under the lower limit topology (the left-closed, right-open interval topology). Describe the closure in \(\mathbb{R}_* \) of the following sets:
(a) \(X = \{ \frac{1}{n} : n \in \mathbb{N} \} \).

(b) \(X = \{-\frac{1}{n} : n \in \mathbb{N} \} \).

(c) \(X = \mathbb{Q} \), the set of rational numbers.

Answer. (a) \(X \cup \{0\} \) (b) \(X \) (c) \(\mathbb{R}_\ell \)

5. Given a topological space \(X \) and a subset \(A \subset X \), one says that \(x_0 \in X \) is an *accumulation point* of \(A \) if every neighborhood \(U \) of \(x_0 \) contains a point of \(A \) other than \(x_0 \).

(a) Show that \(A \) is closed in \(X \) if and only if it contains all of its accumulation points.

(b) Show that the closure of \(A \) is the union of \(A \) with the set of its accumulation points.

Answer. (a) If \(A \) is closed, then \(X - A \) is open and no point of \(X - A \) can be an accumulation point of \(A \). On the other hand, if \(A \) is not closed, then \(X - A \) is not open and there exists \(x \in X - A \) such that every neighborhood of \(x \) intersects \(A \). That is, \(x \) is an accumulation point of \(A \) not in \(A \).

(b) Let \(A' \) denote the accumulation points of \(A \). \(A \cup A' \) is closed by (a), so \(A \subset \overline{A} \subset A \cup A' \). However, arguing as in (a), \(A' - \overline{A} = A' \cap (X - \overline{A}) = \emptyset \).

6. Let \(\mathbb{R}_Z^2 \) denote the plane with the *Zariski topology*. A basis \(\mathcal{B} \) for \(\mathbb{R}_Z^2 \) consists of all subsets of \(\mathbb{R}^2 \) whose complements are zero sets of polynomials with real coefficients. That is, \(U \) is a basic open set for \(\mathbb{R}_Z^2 \) if there is a polynomial \(p : \mathbb{R}^2 \to \mathbb{R} \) with real coefficients such that \(U = \mathbb{R}^2 - \{(x, y) : p(x, y) = 0\} = \{(x, y) : |p(x, y)| > 0\} \).

(a) Show that \(\mathcal{B} \) is a basis for a topology; i.e., show that \(\mathcal{B} \) is closed under finite intersections.

(b) Let \(f(x, y) \) and \(g(x, y) \) be two polynomials with real coefficients, and define a function \(F : \mathbb{R}_Z^2 \to \mathbb{R}_Z^2 \) by \(F(x, y) = (f(x, y), g(x, y)) \). Show that \(F \) is continuous in the Zariski topology.

Answer. For (a), given two polynomials, the intersection of their zero sets is the zero set of their product.

For (b), if \(C \) is the zero set of \(h(x, y) \), then \(F^{-1}(C) \) is the zero set of \(h \circ F \).