Assignment 2–Solutions to Selected Problems

1. Problems 1 and 2, p. 138 in the text.
 Answer. Let $\phi, \psi : I \to I$ be defined as follows:
 \[
 \phi(t) = \begin{cases}
 2t & \text{if } 0 \leq t < 1/2, \\
 1 & \text{if } 1/2 \leq t \leq 1
 \end{cases}
 \quad \text{and} \quad
 \psi(t) = \begin{cases}
 0 & \text{if } 0 \leq t < 1/2, \\
 2t - 1 & \text{if } 1/2 \leq t \leq 1
 \end{cases}
 \]

 Obviously both ϕ and ψ are homotopic to the identity rel ∂I. One notes that $f(0) = f(1) = g(0) = g(1) = e$ and that $f(t) = f(t) \bullet g(0) = f(t) \bullet g(1) = g(0) \bullet f(t) = g(1) \bullet f(t)$. Pointwise $f \ast g(t) = (f \circ \phi(t)) \bullet (g \circ \psi(t))$. It follows that $f \ast g \simeq f \bullet g$ rel \ast. This solves problem 1.

 For problem 2, observe that $g \ast f(t) = (f \circ \psi(t)) \bullet (g \circ \phi(t))$.

2. Problem 3, p. 138 in the text.
 Answer. Sketch. By Smooth Approximation and Sard’s Theorem, without loss of generality, we may assume that a loop is smooth and misses the base point \ast. Now the loop may be projected radially from \ast to the “boundary” of the defining rectangle with identifications. One must adjust this argument slightly for the pointed homotopy.