Assignment 3–Solutions to Selected Problems

1. Problem 2, p. 143 in the text.
 Answer. Sketch. Let \(p : S^2 \to \mathbb{P}^2 \) be the antipodal identification, double covering map. Fixing a base point \(y_0 \in \mathbb{P}^2 \), let \(p^{-1}(y_0) = \{x_0, -x_0\} \) with \(x_0 \) the base point in \(S^2 \). By III.3.8, any \([f] \in \pi_1(\mathbb{P}^2)\) lifts to a path \(\hat{f} \) whose endpoint \(\hat{f}(1) \in \{x_0, -x_0\} \) depends only on the class \([f]\). In \(S^2 \), \(\hat{f} \) is null homotopic rel \(\partial I \) if \(\hat{f}(1) = x_0 \), and homotopic rel \(\partial I \) to a semicircle from \(x_0 \) to \(-x_0 \) if \(\hat{f}(1) = x_1 \). In the former case we must have \([f] = 1\), while in the latter case \([f] \neq 1\) by III.3.7.

2. Problem 3, p. 143 in the text.
 Answer. By Theorem III.2.6, we have \(\pi_1(\mathbb{T}^n) \) is the \(n \)-fold product of \(\pi_1(S^1) \), or \(\mathbb{Z} \times \cdots \times \mathbb{Z} \) (\(n \) factors).