Assignment 4–Solutions to Selected Problems

1. Problem 1, p. 145 in the text.
 Answer. Let \(f : S^n \to P^m \) represent a homotopy class in \(\pi_n(P^m) \). If \(p : S^m \to P^m \) is the canonical antipodal covering map, then \(f \) lifts to \(g : S^n \to S^m \) such that \(p \circ g = f \). But \(g \) is homotopic to a constant since \(1 < n < m \), and \(f \) must be homotopically trivial.

2. Problem 2, p. 146 in the text.
 Answer. Let \(f : P^2 \to S^1 \). By Exercise III.3.2, \(\pi_1(P^2) = Z_2 \). So \(f_\#(\pi_1(P^2)) = \{1\} \) since \(\pi_1(S^1) = Z \). Thus \(f \) lifts to \(g : P^2 \to R \) such that \(f = p \circ g \), where \(p : R \to S^1 \) is the standard exponential covering map. But \(g \) is homotopically trivial since \(R \) is contractible, hence so is \(f \).