Week in Review #1

Section L.1: Introduction to Logic

- A **statement** is a declarative sentence that can be evaluated as either true or false (but not both).
- **Connectives**
 - conjunction (and), denoted $p \land q$
 - disjunction (inclusive or), denoted $p \lor q$
 - negation (not), denoted $\neg p$

1. Which of the following are statements.

 (a) A&M is the friendliest college in the world.

 (b) A&M’s Miss Reveille is a German Shepard.

 (c) There are 30 tennis courts on A&M’s campus.

2. Use the statements b, s, and n for the following. compound statements in words.

 b: The car is blue. s: The car is a saturn. n: The car is new.

 (a) Express the compound statements in words.

 i. $n \land \neg b$

 ii. $s \lor b$

 (b) Give the symbolic expression for these statements.

 i. The new saturn was not blue.

 ii. The saturn was blue or it was not new.

Section L.2: Truth Tables

- **Definitions**
 - Exclusive Disjunction (exclusive or), denoted \lor
 - A **tautology** is a compound statement that is always true.
 - A compound statement that is always false is called a **contradiction**.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg q \land r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

3. Construct the following truth tables.

 (a) $\neg p \lor (p \land q)$

 (b) $p \land (\neg q \lor r)$

4. If the truth value of p, q and r is true and the truth value of s is false, what is the truth value of these compound statements.

 (a) $(s \lor \neg r) \land q$

 (b) $(\neg q \land r) \lor (\neg s \land p)$

 (c) $p \lor \left[\left(\neg r \land s \right) \lor \neg (q \land \neg p) \land r \right]$
Section 1.1: Set and Set Operations.

- A set is a well defined collection of objects
- Roster notation: \(A = \{1, 2, 3\} \)
- Set builder notation: \(B = \{x \mid x \text{ is a positive integer}\} \)

Definitions:
- \(x\) is an element of set \(A\), \(x \in A\), if \(x\) is an object in \(A\).
- Set \(A\) and \(B\) are equal if they have exactly the same elements.
- \(A\) is a subset of \(B\), \(A \subseteq B\), if every element in \(A\) is also an element of \(B\).
- \(A\) is a proper subset, \(A \subset B\), if \(A\) is a subset of \(B\) but is not equal to \(B\).
- The empty set, \(\emptyset = \{\}\), is a set that contains no elements.
- The universal set, \(U\), is the set that contains all of the elements possible in a problem.

- Set \(A\) and \(B\) are disjoint provided that \(A \cap B = \emptyset\).

Set operations:
- Union, \(A \cup B\)
- Intersection, \(A \cap B\)
- Complement, \(A^C\)

5. Write the set \(\{x \mid x\) is a letter in the word ENCYCLOPEDIA\} in roster notation.

6. \(U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\), \(A = \{0, 3, 6, 9\}\), \(B = \{0, 2, 4, 6, 8\}\), and \(C = \{1, 3, 5, 7, 9\}\).

Find the following.
- (a) \(n(A) = \)
- (b) \(A \cup B\)
- (c) \(A \cap C^C\)
- (d) \(A \cap B \cap C\)
- (e) \((A \cap C)^C \cap B\)
- (f) How many subsets does \(B\) have?
- (g) How many proper subsets does \(B\) have?
- (h) Are \(A\) and \(B\) disjoint?
- (i) Are \(B\) and \(C\) disjoint?
- (j) Give two disjoint proper subsets of \(B\).

7. Shade the regions of a Venn Diagram that represent the following.
- (a) \(A \cup B \cup C\)
- (b) \((A^C \cap B) \cup C\)

8. Indicate the regions of the Venn Diagram that correspond to these set operations.

 - (a) \((B \cup C)^C\)
 - (b) \((A \cap C)^C \cap B\)

9. \(U\) = the set of A&M students.
- \(M = \{x \in U \mid x\) is male\}\)
- \(F = \{x \in U \mid x\) is female\}\)
- \(D = \{x \in U \mid x\) drinks Dr. Pepper\}\)
- \(S = \{x \in U \mid x\) drinks Sprite\}\)
- \(C = \{x \in U \mid x\) drinks coffee\}\)

(a) Describe each of the given sets in words.
- i. \(S \cup C^C\)
- ii. \(M \cap (D \cup S)\)

(b) Write the set (use set notation) that represents each of the given statements.
- i. The female students at A&M that drink sprite but do not drink coffee.
- ii. The students at A&M that drink coffee or do not drink Dr. Pepper.