Week in Review #1

Section L.1: Introduction to Logic

- A statement is a declarative sentence that can be evaluated as either true or false (but not both).
- Connectives
 - conjunction (and), denoted \(p \land q \)
 - disjunction (inclusive or), denoted \(p \lor q \)
 - negation (not), denoted \(\neg p \)

1. Which of the following are statements.

 (a) A&M is the friendliest college in the world.

 (b) A&M’s Miss Reveille is a German Shepard.

 (c) There are 30 tennis courts on A&M’s campus.

2. Use the statements \(b \), \(s \), and \(n \) for the following. compound statements in words.

 \(b \): The car is blue.

 \(s \): The car is a saturn.

 \(n \): The car is new.

 (a) Express the compound statements in words.

 i. \(n \land \neg b \)

 ii. \(s \lor b \)

 (b) Give the symbolic expression for these statements.

 i. The new saturn was not blue.

 ii. The saturn was blue or it was not new.

Section L.2: Truth Tables

- Definitions
 - Exclusive Disjunction (exclusive or), denoted \(\lor \)
 - A tautology is a compound statement that is always true.
 - A compound statement that is always false is called a contradiction.

\[
\begin{array}{c|c|c}
\text{p} & \text{q} & \text{p} \land \text{q} \\
\hline
\text{T} & \text{T} & \text{T} \\
\text{T} & \text{F} & \text{F} \\
\text{F} & \text{T} & \text{F} \\
\text{F} & \text{F} & \text{F} \\
\end{array}
\quad
\begin{array}{c|c|c}
\text{p} & \text{q} & \text{p} \lor \text{q} \\
\hline
\text{T} & \text{T} & \text{T} \\
\text{T} & \text{F} & \text{T} \\
\text{F} & \text{T} & \text{T} \\
\text{F} & \text{F} & \text{F} \\
\end{array}
\quad
\begin{array}{c|c|c}
\text{p} & \text{q} & \text{p} \lor \text{q} \\
\hline
\text{T} & \text{T} & \text{F} \\
\text{T} & \text{F} & \text{T} \\
\text{F} & \text{T} & \text{T} \\
\text{F} & \text{F} & \text{F} \\
\end{array}
\]

3. Construct the following truth tables.

(a) \(\neg p \lor (p \land q) \)
(b) \(p \land (\sim q \lor r) \)

4. If the truth value of \(p, q \) and \(r \) is true and the truth value of \(s \) is false, what is the truth value of these compound statements.

(a) \((s \lor \sim r) \land q \)

(b) \((\sim q \land r) \lor (\sim s \land p) \)

(c) \(p \lor \left[(\sim r \land s) \lor (\sim (q \land \sim p) \lor r) \right] \)

Section 1.1: Set and Set Operations.

- a set is a well defined collection of objects
- roster notation: \(A = \{1, 2, 3\} \)
- set builder notation: \(B = \{x \mid x \text{ is a positive integer} \} \)
- Definitions:
 - \(x \) is an \textbf{element of} set \(A \), \(x \in A \), if \(x \) is an object in \(A \).
 - set \(A \) and \(B \) are \textbf{equal} if they have exactly the same elements.
 - \(A \) is a \textbf{subset} of \(B \), \(A \subseteq B \), if every element in \(A \) is also an element of \(B \)
 - \(A \) is a \textbf{proper subset}, \(A \subset B \), if \(A \) is a subset of \(B \) but is not equal to \(B \).
 - The \textbf{empty set}, \(\phi = \{\} \), is a set that contains no elements
 - The \textbf{universal set}, \(U \), is the set that contains all of the elements possible in a problem.
- Set \(A \) and \(B \) are \textbf{disjoint} provided that \(A \cap B = \phi \)
- Set operations:
 - Union, \(A \cup B \)
 - Intersection, \(A \cap B \)
 - Compliment, \(A^C \)
5. Write the set \{ x \mid x \text{ is a letter in the word ENCYCLOPEDIA} \} in roster notation.

6. \(U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \ A = \{0, 3, 6, 9\}, \ B = \{0, 2, 4, 6, 8\}, \) and \(C = \{1, 3, 5, 7, 9\} \)

Find the following.

(a) \(n(A) = \)

(b) \(A \cup B \)

(c) \(A \cap C^C = \)

(d) \(A \cap B \cap C = \)

(e) \((A \cap C)^C \cap B = \)

(f) How many subsets does \(B \) have?

(g) How many proper subsets does \(B \) have?

(h) Are \(A \) and \(B \) disjoint?

(i) Are \(B \) and \(C \) disjoint?

(j) Give two disjoint proper subsets of \(B \).
7. Shade the regions of a Venn Diagram that represent the following.
 (a) \(A \cup B \cup C\)
 (b) \((A^c \cap B) \cup C\)

8. Indicate the regions of the Venn Diagram that correspond to these set operations.
 (a) \((B \cup C)^c\)
 (b) \((A \cap C)^c \cap B\)

9. \(U =\) the set of A\&M students.

 \[M = \{ x \in U | x \text{ is male}\}\]
 \[F = \{ x \in U | x \text{ is female}\}\]
 \[D = \{ x \in U | x \text{ drinks Dr. Pepper}\}\]
 \[S = \{ x \in U | x \text{ drinks Sprite}\}\]
 \[C = \{ x \in U | x \text{ drinks coffee}\}\]

 (a) Describe each of the given sets in words.
 i. \(S \cup C^c\)
 ii. \(M \cap (D \cup S)\)

 (b) Write the set (use set notation) that represents each of the given statements.
 i. The female students at A\&M that drink sprite but do not drink coffee.
 ii. The students at A\&M that drink coffee or do not drink Dr. Pepper.