4.2 - Derivatives of Logarithmic Functions

• For \(f(x) = \ln x \), with \(x > 0 \), \(f'(x) = \frac{1}{x} \)

• **Chain Rule for Natural Logarithm:** If \(g \) is a differentiable function of \(x \) and the range of \(g \) is \((0, \infty)\), then the derivative of \(h(x) = \ln[g(x)] \) is

\[
h'(x) = \frac{1}{g(x)} \cdot g'(x) = \frac{g'(x)}{g(x)}
\]

• **Chain Rule for General Logarithm:** If \(g \) is a differentiable function of \(x \) and the range of \(g \) is \((0, \infty)\), then the derivative of \(h(x) = \log_b[g(x)] \) is

\[
h'(x) = \left(\frac{1}{\ln b} \right) \left(\frac{1}{g(x)} \right) \cdot g'(x) = \frac{g'(x)}{g(x)(\ln b)}
\]

Ex: Differentiate the following:

(a) \(f(x) = 4 \ln x + 3 \)

(b) \(g(x) = \ln x^5 \)

(c) \(h(x) = \left(\frac{2}{x^4} \right) \ln x \)

(d) \(k(x) = \ln(3x^2 + 10) \)

(e) \(y = (\ln x)^5 \)
(f) \(f(x) = \frac{\ln (x^4 - 8x)^2}{x^5 - 6x + 1} \)

(g) \(g(x) = \log_7 x \)

(h) \(h(x) = \ln (\log_5 (2x^3)) \)

(i) \(y = \log_6 \left(\frac{x + 1}{x - 2} \right) \)
Ex: Find the equation of the tangent line to $f(x) = (\ln x^2)(\ln x)^3$ at $x = e$.