5.1 - First Derivatives and Graphs

Increasing and Decreasing Functions: On an open interval \((a, b)\) on which \(f(x)\) is differentiable and continuous

(a) \(f(x)\) is **increasing** on \((a, b)\) if \(f'(x) > 0\) on \((a, b)\).

(b) \(f(x)\) is **decreasing** on \((a, b)\) if \(f'(x) < 0\) on \((a, b)\).

(c) \(f(x)\) is **constant** on \((a, b)\) if \(f'(x) = 0\) on \((a, b)\).

Ex: Using the graph of \(f(x)\) below, answer the following questions.

![Graph of f(x)](image)

(a) On what intervals is \(f'(x) > 0\) and what does this say about \(f(x)\)?

(b) On what intervals is \(f'(x) < 0\) and what does this say about \(f(x)\)?

(c) On what intervals is \(f'(x) = 0\) and what does this say about \(f(x)\)?
Def: A critical value for \(f(x) \) is an \(x \)-value in the domain of \(f(x) \) for which

1. \(f'(x) = 0 \) or
2. \(f'(x) \) is undefined

Ex: Find the critical values for the following functions:

(a) \(f(x) = x^3 + 3x^2 - 9x + 3 \)

(b) \(g(x) = \sqrt{x} \)

First Derivative Test
Suppose \(x = c \) is a critical value of \(f(x) \).

1. If \(f''(x) \) changes from \((+)\) to \((-)\) at \(x = c \), then we have that \(f(x) \) is \(\nearrow \searrow \) and at \(x = c \) there is a **relative maximum**.

2. If \(f''(x) \) changes from \((-)\) to \((+)\) at \(x = c \), then we have that \(f(x) \) is \(\searrow \nearrow \) and at \(x = c \) there is a **relative minimum**.

3. If the sign of \(f'(x) \) is the same on both sides of \(x = c \), then at \(x = c \) there is neither a relative maximum nor a relative minimum.

(NOTE: Relative extrema means all relative maxima and relative minima. All relative extrema will occur at critical values, but not all critical values will produce relative extrema.)

Ex: Determine the intervals where the following functions are increasing and decreasing and locate any **points** where relative extrema occur.

(a) \(f(x) = x^3 + 3x^2 - 9x + 3 \)
(b) \(f(x) = x e^{2x} \)

(c) \(f(x) = x + \ln x \)

(d) \(f(x) = \frac{x^2}{x - 1} \)
Ex: Given $f'(x) = p(x + 2)^2(x - 5)^3(x - 10)$ where p is a function that is always positive, find all critical values of $f(x)$, all intervals where $f(x)$ is increasing and decreasing, and all places where relative extrema occur.