5.3 - Logarithmic Functions and Their Derivatives

• For \(f(x) = \ln x \), with \(x > 0 \), \(f'(x) = \frac{1}{x} \)

• **Chain Rule for Natural Logarithm:** If \(g \) is a differentiable function of \(x \) and the range of \(g \) is \((0, \infty)\), then the derivative of \(h(x) = \ln [g(x)] \) is

\[
h'(x) = \frac{1}{g(x)} \cdot g'(x) = \frac{g'(x)}{g(x)}
\]

• **Chain Rule for General Logarithm:** If \(g \) is a differentiable function of \(x \) and the range of \(g \) is \((0, \infty)\), then the derivative of \(h(x) = \log_b [g(x)] \) is

\[
h'(x) = \left(\frac{1}{\ln b}\right) \cdot \left(\frac{1}{g(x)}\right) \cdot g'(x) = \frac{g'(x)}{g(x)(\ln b)}
\]

Ex: Differentiate the following:

(a) \(f(x) = 4 \ln x + 3 \)

(b) \(g(x) = \ln x^5 \)

(c) \(h(x) = \left(\frac{2}{x^4}\right)(\ln x) \)

(d) \(k(x) = \ln(3x^2 + 10) \)

(e) \(y = (\ln x)^5 \)
(f) \(f(x) = \frac{\ln (x^4 - 8x)^2}{x^5 - 6x + 1} \)

(g) \(g(x) = \log_7 x \)

(h) \(h(x) = \ln (\log_5 (2x^3)) \)

(i) \(y = \log_6 \left(\frac{x + 1}{x - 2} \right) \)
Ex: Find the equation of the tangent line to \(f(x) = (\ln x^2)(\ln x)^3 \) at \(x = e \).

Ex: On a national tour of a small new rock band, the demand for T-shirts is given by

\[
p = 15 - 4\ln x \quad 1 \leq x \leq 40
\]

where \(x \) is the number of T-shirts that can be sold during a single concert at a price of \(\$p \). If the shirts cost the band \$5 each, how should they be priced in order to maximize the profit per concert?
Ex: Using the graphing strategies learned in this class, summarize the pertinent information and graph \(f(x) = (\ln x)^2 \).