The exam consists of 19 questions, the first 15 of which are multiple choice. The point value for a question is written next to the question number. There is a total of 100 points. No aids are permitted.

For questions 1 to 15 mark your answers on the ScanTron form.

1. [4 pts] Given $\mathbf{a} = \langle -1, 2 \rangle$ and $\mathbf{b} = \langle 5, -3 \rangle$, find $3\mathbf{a} + \mathbf{b}$.

 (a) $\langle -8, 9 \rangle$
 (b) $\langle 4, -1 \rangle$
 (c) $\langle -3, 6 \rangle$
 (d) $\langle 2, 3 \rangle$
 (e) $\langle 5, 0 \rangle$

2. [4 pts] Given the function $f(x) = (\ln(x^4 + 1))^2$, find $f'(1)$.

 (a) 4
 (b) 0
 (c) 1
 (d) $\ln 4$
 (e) $\ln 16$
3. [4 pts] Find $\int e^{2x}(1 + e^{2x})^3 \, dx$.

(a) $e^{8x} + C$

(b) $e^{2x}(1 + e^{2x})^4 + C$

(c) $\frac{1}{8}e^{2x}(1 + e^{2x})^4 + C$

(d) $\frac{1}{8}(1 + e^{2x})^4 + C$

(e) $\frac{1}{4}(1 + e^{2x})^4 + C$

4. [4 pts] Find an equation for the line tangent to the curve $\mathbf{r}(t) = \langle \sin t, t^2 + t + 1 \rangle$ at the point corresponding to $\mathbf{r}(0)$.

(a) $y = x + 1$

(b) $y = 1$

(c) $x = 0$

(d) $y = 2x + 3$

(e) $y = 3x - 1$
5. [4 pts] Use Newton’s method to find a second approximation \(x_2 \) to a root of the equation
\[5x^2 - e^x = 0 \]
given the initial approximation \(x_1 = 1 \).

(a) \(\frac{5}{10 - e} \)
(b) 1
(c) \(5 - 2e \)
(d) \(\frac{5}{9} \)
(e) \(\frac{5 - e}{10 - e} \)

6. [4 pts] Find the value of \(c \) which makes the function

\[
f(x) = \begin{cases}
\sin(cx) & \text{if } x < 0 \\
\frac{e^{-x} - 1}{x} & \text{if } x \geq 0 \\
2 + \int_0^x \tan^{-1}(e^t) \, dt & \text{if } x \geq 0
\end{cases}
\]
continuous everywhere.

(a) \(-2\)
(b) \(-1\)
(c) 0
(d) 1
(e) 2
7. [4 pts] Which of the following is true?

(a) \(\int_0^1 \sqrt{1 + x^4} \, dx < 1 \)
(b) \(\int_0^1 -e^{-x^3} \, dx \geq 0 \)
(c) \(\int_1^2 \tan^{-1}(x^2) \, dx \geq \pi \)
(d) \(\int_{-1}^1 \frac{\sin x}{x^8 + 3} \, dx = 0 \)
(e) \(\int_0^1 x^4 \, dx = \frac{1}{4} \)

8. [4 pts] Find the derivative of the function \(f(x) = \tan^{-1}(e^{x^2}) \).

(a) \(\frac{2xe^{x^2}}{1 + e^{2x^2}} \)
(b) \(\frac{2xe^{x^2}}{1 + e^{2x^2}} \)
(c) \(\frac{4x}{1 + e^{2x^2}} \)
(d) \(\frac{2x}{1 + e^{2x^2}} \)
(e) \(\frac{2xe^{2x^2}}{1 + e^{2x^2}} \)
9. [4 pts] A horizontal force of 20 N is applied to move a box up a ramp that is 10 m long and inclined at an angle of 30 degrees to the horizontal. What is the work done on the box?

(a) 200 J
(b) 100√3 J
(c) 0 J
(d) 100 J
(e) 20 J

10. [4 pts] In which of the following intervals does the equation \(x^4 + 8x - 1 = 0 \) have a solution?

(a) \((-2, -1)\)
(b) \((-1, 0)\)
(c) \((0, 1)\)
(d) \((1, 2)\)
(e) \((2, 3)\)

11. [4 pts] Let \(y \) be defined implicitly in terms of \(x \) by the equation \(x^2e^y - y^2 = 1 \). Find \(y' \) when \((x, y) = (1, 0)\).

(a) 0
(b) \(-\frac{1}{2}\)
(c) -1
(d) -2
(e) \(e\)
12. [4 pts] Find the derivative of the function \(f(x) = \frac{(x + 4)^{24}(x - 3)^8}{(x + 3)^{57}(x + 6)^5} \).

(a) \(\frac{24(x + 4)^{23}(x - 3)^8 + 8(x + 4)^{24}(x - 3)^7}{(x + 3)^{56}(x + 6)^4} \)

(b) \(\frac{24(x + 4)^{23}(x - 3)^8 + 8(x + 4)^{24}(x - 3)^7}{(x + 3)^{56}(x + 6)^4} f(x) \)

(c) \(\left(\frac{24}{x + 4} + \frac{8}{x - 3} - \frac{57}{x + 3} - \frac{5}{x + 6} \right) f(x) \)

(d) \(\left(\frac{1}{24(x + 4)} + \frac{1}{8(x - 3)} - \frac{1}{57(x + 3)} - \frac{1}{5(x + 6)} \right) f(x) \)

(e) \(\frac{24(x + 4)^{23}(x - 3)^8 + 8(x + 4)^{24}(x - 3)^7}{(x + 3)^{114}(x + 6)^{10}} \)

13. [4 pts] Find the linear approximation to the function \(f(x) = (x + 2)e^{x-1} \) at the point \(x = 1 \).

(a) \(L(x) = 2ex - 2e + 3 \)

(b) \(L(x) = 3x - 2 \)

(c) \(L(x) = 3x + 3 \)

(d) \(L(x) = 4ex - e \)

(e) \(L(x) = 4x - 1 \)
14. [4 pts] Suppose that \(f'(x) = x^2 - 4x + 15 \) on the interval \((1, 3)\). What can be said about \(f \)?

(a) \(f \) has a local minimum at some point in \((1, 3)\)

(b) \(f \) has a local maximum at some point in \((1, 3)\)

(c) the graph of \(f \) is concave upward on \((1, 3)\)

(d) the graph of \(f \) is concave downward on \((1, 3)\)

(e) the graph of \(f \) has a point of inflection \((c, f(c))\) for some \(c \) in \((1, 3)\)

15. [4 pts] Given the function \(f(x) = \int_x^{2x} \frac{1}{t^2 + t^2 + 1} \, dt \), find \(f'(0) \).

(a) \(\frac{1}{3} \)

(b) \(-\frac{1}{3}\)

(c) 0

(d) 1

(e) 2
16. [10 pts] Compute \(\int_{0}^{3} \left(2x + \frac{3x}{\sqrt{x + 1}} \right) \, dx. \)
17. [10 pts] Find an equation for the tangent line to the graph of the function \(f(x) = 2 \sin^2 x \) at \(x = \frac{\pi}{4} \).
18. [10 pts] Two cars start moving away from an intersection. Car A travels due north and its distance from the intersection after t seconds is $(t + 1)^2 - 1$ meters. Car B travels due south and its speed after t seconds is $\frac{2t}{t^2 + 1}$ meters per second. How fast is the distance between the two cars increasing when $t = 1$?
19. [10 pts] Find the largest possible area of a rectangle whose base lies on the x-axis and whose two vertices above the x-axis lie on the curve $y = 80 - x^4$.