The exam consists of 19 questions, the first 15 of which are multiple choice. The point value for a question is written next to the question number. There is a total of 100 points. No aids are permitted.

For questions 1 to 15 mark your answers on the ScanTron form.

1. [4 pts] Given $a = \langle 2, -1 \rangle$ and $b = \langle -3, 2 \rangle$, find $a + 2b$.

 (a) $\langle 8, -3 \rangle$
 (b) $\langle -4, 1 \rangle$
 (c) $\langle 1, 0 \rangle$
 (d) $\langle -1, 1 \rangle$
 (e) $\langle -4, 3 \rangle$

2. [4 pts] Which of the following vectors is orthogonal to $\langle 4, -5 \rangle$?

 (a) $\langle 3, -2 \rangle$
 (b) $\langle 3, 2 \rangle$
 (c) $\langle 5, 4 \rangle$
 (d) $\langle 4, -5 \rangle$
 (e) $\langle 5, -4 \rangle$
3. [4 pts] Find an equation for the line tangent to the curve $r(t) = \langle t^2, 2t^3 + 1 \rangle$ at the point corresponding to $r(1)$.

(a) $y = 2x + 1$
(b) $y = 3x$
(c) $y = 3$
(d) $y = 2x + 3$
(e) $y = 3x - 3$

4. [4 pts] Which of the following is a horizontal asymptote for the function $f(x) = \frac{x^2 + 1}{3 - x^2}$?

(a) $y = 0$
(b) $y = 1$
(c) $y = -1$
(d) $y = \frac{1}{3}$
(e) $y = 3$

5. [4 pts] Suppose that f and g are integrable functions such that $\int_0^2 f(x) \, dx = 3$, $\int_1^2 g(x) \, dx = 4$, and $\int_0^2 [f(x) + g(x)] \, dx = 2$. Find $\int_0^1 g(x) \, dx$.

(a) -5
(b) -1
(c) 0
(d) 2
(e) 7
6. [4 pts] Find the value of c which makes the function

$$f(x) = \begin{cases}
\frac{e^{cx} - 1}{x + \sin x} & \text{if } x > 0 \\
\frac{1}{\cos x} & \text{if } x \leq 0
\end{cases}$$

continuous everywhere.

(a) -2
(b) -1
(c) 0
(d) 1
(e) 2

7. [4 pts] Find the derivative of the function $f(x) = \frac{e^x(x + 2)^9}{(x - 1)^5(x + 3)^{11}}$.

(a) \[
\frac{e^x(x + 9)(x + 11)}{(x - 1)^{10}(x + 3)^{22}}
\]

(b) \[
\left(1 + \frac{9}{x + 2} - \frac{5}{x - 1} - \frac{11}{x + 3}\right) f(x)
\]

(c) \[
\left(1 + \frac{1}{(x + 2)^9} - \frac{1}{(x - 1)^5} - \frac{1}{(x + 3)^{11}}\right) f(x)
\]

(d) \[
\left(e^x + \frac{1}{9(x + 2)^8} - \frac{1}{5(x - 1)^4} - \frac{1}{11(x + 3)^{10}}\right) f(x)
\]

(e) \[
\left(e^x + \frac{1}{9(x + 2)} - \frac{1}{5(x - 1)} - \frac{1}{11(x + 3)}\right) f(x)
\]
8. [4 pts] In which of the following intervals does the equation $x^4 = 3 - x$ have a solution?

(a) $(-1, 0)$
(b) $(0, 1)$
(c) $(1, 2)$
(d) $(2, 3)$
(e) $(3, 4)$

9. [4 pts] Given the function $f(x) = \int_x^{x^2} \frac{e^t}{1 + t^2} dt$, find $f'(0)$.

(a) -1
(b) 0
(c) e
(d) $\frac{1}{2}$
(e) $-\frac{1}{2}$

10. [4 pts] Compute $\lim_{x \to 0} (1 + x^2)^{1/x^2}$.

(a) e
(b) $\frac{1}{2}$
(c) 0
(d) 1
(e) 2
11. [4 pts] Compute $\int_{-1}^{2} (4x^3 + 3) \, dx$.

(a) 20
(b) 22
(c) 24
(d) 26
(e) 28

12. [4 pts] Let y be defined implicitly in terms of x by the equation $\tan^{-1}(xy + 1) = x$. Find y' when $(x, y) = (\frac{\pi}{4}, 0)$.

(a) $\frac{8}{\pi}$
(b) $\frac{4}{\pi}$
(c) 2
(d) -2
(e) e

13. [4 pts] Given the function $f(x) = x^2 + e^x + \tan^{-1}(x)$, find $(f^{-1})'(1)$.

(a) 0
(b) $\frac{1}{2}$
(c) 1
(d) 2
(e) $e + \frac{5}{2}$
14. [4 pts] Suppose that f is a function such that $f'(x) = 2x^3 - 3x^2 - 1$ on the interval $(0, 2)$. What can be said about f?

(a) f has a local minimum at some point in $(0, 2)$
(b) f has a local maximum at some point in $(0, 2)$
(c) the graph of f is concave upward on $(0, 2)$
(d) the graph of f is concave downward on $(0, 2)$
(e) f is increasing on $(0, 2)$

15. [4 pts] Find the derivative of the function $f(x) = e^{\tan^{-1}(x^2)}$.

(a) $\frac{e^{\tan^{-1}(x^2)}}{1 + x^2}$
(b) $\frac{e^{\tan^{-1}(x^2)}}{1 + x^4}$
(c) $\frac{2x}{1 + x^4}$
(d) $\frac{2xe^{\tan^{-1}(x^2)}}{1 + x^4}$
(e) $2xe^{\tan^{-1}(x^2)}$
16. [10 pts] Find the absolute maximum value of the function \(f(x) = x^3 - 3x + 2 \) on the interval \([0, 2]\).
17. [10 pts] Find an equation for the tangent line to the graph of the function

\[f(x) = \sin x + \int_{\pi}^{x} \frac{1}{1 + t^4} \, dt \]

at \(x = \pi \).
18. [10 pts] A farmer wishes to fence off a rectangular area in a field and also to subdivide this area into four equal rectangular pieces as pictured. If the large rectangle is required to be 160 m2, what is the minimum length of fence needed to do this?
19. [10 pts] A ladder of length 10 ft leans against a vertical wall. The bottom of the ladder slips in such a way that after t seconds its distance from the wall is $(t^2 + 2)$ ft. How fast is the top of the ladder sliding down the wall when $t = 2$?