On the entropy of actions of nilpotent Lie groups and their lattice subgroups

V. Ya. Golodets

This research was done jointly with Tony Dooley.

† School of Mathematics, University of N.S.W. Sydney NSW 2052, Australia
(e-mail: v.golodets@unsw.edu.au)

Abstract

We consider a connected simply connected Lie group G containing a lattice subgroup Γ. We prove the existence of a compact subset $C(\Gamma)$ of G with properties: $C(\Gamma)$ tiles G with tiling centers Γ, there is a lattice subgroup Γ' such that $\Gamma \subset \Gamma'$, $[\Gamma' : \Gamma] = n$ for some natural n, and furthermore, $|C(\Gamma')| = n^{-1}|C(\Gamma)|$ where $|C(\Gamma)|$ is the Haar measure of $C(\Gamma)$. Let now T be an ergodic action of G on a probability space (X, \mathcal{B}, μ) preserving measure μ, and T^Γ, the restriction of T to Γ is also ergodic. Then the following formula: $h(T) = |C(\Gamma)|^{-1}h_K(T^\Gamma)$ holds, where $h(T)$ is the Ornstein-Weiss entropy of T and $h(T^\Gamma)$ is Kolmogorov-Sinai entropy of T^Γ.

If T^Γ is not ergodic on (X, \mathcal{B}, μ) for some lattice subgroup Γ of G then there is a T-invariant subfactor (Y, \mathcal{B}_Y, ν) such that the restriction T_Y of T to Y is reduced to transitive action of the quotient group $G/(K\Gamma)$ where K is a commutant of G. We prove that T has completely positive entropy (CPE) if and only if T^Γ has CPE for some lattice subgroup Γ of G. It is possible to deduce from this that T has CPE if and only if T is uniformly mixing. In this case T has Lebesgue spectrum with infinite multiplicity.

Let T be ergodic free action of G on X as above with a positive entropy. It is introduced the notion of the Pinsker algebra $\Pi(T)$ for the action T, and let Γ be any lattice subgroup of G that T^Γ is ergodic and the Pinsker algebra $\Pi(T^\Gamma)$ is not ν. Then we show $\Pi(T^\Gamma)$ is a T-invariant σ-subalgebra of \mathcal{B} and $\Pi(T) = \Pi(T^\Gamma)$. If Γ' is any other ergodic lattice subgroup of G then again $\Pi(T^\Gamma) = \Pi(T)$. In this case, T always has Lebesgue spectrum with infinite multiplicity on the space $L^2(X, \mu) \ominus L^2(\Pi(T))$ where $L^2(\Pi(T))$ contains all $\Pi(T)$-measurable functions from $L^2(X, \mu)$.

1