Abstract: A basic task in Fractal Geometry is to determine or estimate the various dimensions of fractal sets such as the Hausdorff dimension, the packing dimension, the lower box-counting and the upper box-counting dimension. Fractal dimensions are introduced to measure the sizes of fractal sets and are employed in many different disciplines. Many results on fractal dimensions are obtained for fractal sets with a special structure. Among them is a typical fractal structure called Moran sets or Moran fractals. These are generations from some different aspects of classical self-similar sets. Recently, I have determined the topological pressure for a class of countably generated Moran sets associated with the sequences of which the frequency of the letter exists. For such a Moran set by net measure techniques, we have shown that the fractal dimensions such as the Hausdorff dimension, the packing dimension and the box-counting dimension are all equal to the unique zero of the pressure function. In my talk, I will present it.