Math142 Lecture Notes
1.2 - Linear Functions and Average Rate of Change

Definition
A linear function has the form \(f(x) = mx + b \) where \(m \) is the average rate of change, or slope of the line, and \(b \) is a constant (\(m \) and \(b \) are real numbers).

The slope (average rate of change) of a line, denoted by \(m \), is a measurement of the steepness of the line. Given two points on a line \((x_1, y_1) \) and \((x_2, y_2) \), the slope of the line is computed by
\[
m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
\]

The slope of the line also gives the average rate of change of \(y \) with respect to \(x \).

Example 1:
(a) Find the average rate of change between \((3, -2) \) and \((5, -6) \).

(b) If the independent variable value increases by 2 units, how will this affect the dependent value?

Definition
The cost \(C(x) \) of producing \(x \) units of a product is given by the cost function
\[
C(x) = \left(\text{variable costs} \right) \cdot \left(\frac{\text{units produced}}{\text{costs}} \right) + \left(\text{fixed costs} \right)
\]

Example 2: The PPPP (Pittsburgh Plasma Producing Plant) has fixed costs of $225,000 and the materials and labor to manufacture each set run $3500. (Note: The Pittsburgh Plant only makes the 32” set.) Let \(x \) represent the number of 32” sets made and sold, and write a cost function for the \(P^3 \) Plant.

Example 3: The Huntsville Plasma TV Producing Plant has total costs of $975,000 to produce 250 plasma television sets. If they have fixed costs of $175,000, find the cost function for Huntsville Plant.
Equations of Lines

<table>
<thead>
<tr>
<th>Type of Line</th>
<th>Value of m</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Decreasing</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>Zero</td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>Undefined</td>
<td></td>
</tr>
</tbody>
</table>

- **slope-intercept form**
 \[y = mx + b \] where \(m \) is the slope and \(b \) is the \(y \)-intercept.

- **point-slope form**
 \[y - y_1 = m(x - x_1) \] where \(m \) is the slope and the line passes through \((x_1, y_1)\).

- **calculator friendly form (CF)**
 \[y = m(x - x_1) + y_1 \] where \(m \) is the slope and the line passes through \((x_1, y_1)\).

- **vertical line**
 \[x = c \] where \(c \) is a constant.

- **horizontal line**
 \[y = c \] where \(c \) is a constant.

Example 4: Write an equation of line and determine whether it is increasing or decreasing.

(a) The line contains the points \((2, 6)\) and \((5, -3)\) (point-slope form).

(b) The line has an \(x \)-intercept at 2 and a \(y \)-intercept at 4 (CF form).

(c) The horizontal line that passes through \((-2, 3)\).

(d) The line that passes through \((-1, 4)\) with a slope of \(\frac{2}{3} \) (slope intercept).

(e) A linear function \(f \) in which \(f(5) = 1 \) and \(f(-7) = -1 \) (CF form).
Example 5: Determine the $x-$ and $y-$ intercepts of $f(x) = \frac{2}{3}(x + 1) + 3$.

Example 6: A XQ-383 sports car costs $40,000 and depreciates $3000 per year.

(a) Determine an equation for the depreciation function.

(b) How much will the car be worth in 5 years?

Definition
The cost of producing the $(x + 1)^{st}$ item of a product is called the **marginal cost**.

Example 7: The ProAudio Company manufactures DVD disks. It determines that the weekly fixed costs are $14,000 and the variable costs are $2.60 per disk.

(a) Determine the linear cost function C and interpret $C(1500)$.

(b) Identify the marginal cost. At a 1500 per week production level, what is the cost of manufacturing the 1501st disk?

Example 8: A taxi charges a flat fee of $3 up to the first mile driven and an additional $0.25 for 1 mile and each addition mile afterward. Write and graph a function that represents this.
Example 9: For the piecewise-defined function $f(x) = \begin{cases}
 x + 2 & x < 1 \\
 3 - x & x \geq 1
\end{cases}$

(a) Evaluate $f(0), f(1), \text{ and } f(3)$.

(b) Make an accurate graph of the function.

Definition

The **absolute value function** $f(x) = |x|$ is defined by

$$f(x) = \begin{cases}
 -x & x < 0 \\
 x & x \geq 0
\end{cases}$$

Example 10: Graph $f(x) = |x|$

Example 11: Rewrite the $f(x) = |2 - x|$ in piecewise form and then graph it.